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Preface 

This book contains 340 problems in solid geo­
metry and is a natural continuation of Problems 
in Plane Geometry, Nauka, Moscow, 1982. It is 
therefore possible to confine myself here to those 
points where this book differs from the first. 

The problems in this collection are grouped 
into (1) computational problems and (2) prob­
lems on proof. 

The simplest problems in Section 1 only have 
answers, others, have brief hints, and the most 
difficult, have detailed hints and worked solu­
tions. There are two reservations. Firstly, in 
most cases only the general outline of the solution 
is given, a number of details being suggested for 
the reader to consider. Secondly, although the 
suggested solutions are valid, they are not pat­
terns (models) to be used in examinations. 

Sections 2-4 contain various geometric facts 
and theorems, problems on maximum and min .. 
imum (some of the problems in this part could 
have been put in Section 1), and problems on 
loci. Some questions pertaining to the geometry 
of tetrahedron, spherical geometry, and so forth 
are also considered here . 

.As to the techniques for solving all these prob­
lems, I have to state that I prefer analytical com­
putational methods to those associated with 
plane geometry. Some of the difficult problems 
in solid geometry will require a high level of 
concentration from the reader t and an ability 
to carry out some rather complicated work. 

The Author 



Section 1 

Computational Problems 

1. Given a cube with edge a. Two vertices of 
a regular tetrahedron lie on its diagonal and the 
two remaining vertices on the diagonal of its 
face. Find the volume of the tetrahedron. 

2. The base of a quadrangular pyramid is a 
rectangle, the altitude of the pyramid is h .. Find 
the volume of the pyramid if it is known that 
all five of its faces are equivalent. 

3. Among pyramids having all equal edges 
(each of length a), find the volume of the one 
which has the greatest number of edges. 

4. Circumscribed about a ball is a frustum of 
a regular quadrangular pyramid whose slant 
height is equal to a. Find its lateral surface area. 

5. Determine the vertex angle of an axial sec­
tion of a cone if its volume is three times the 
volume of the ball inscribed in it. 

6. Three balls touch the plane of a given tri­
angle at the vertices of the triangle and one an­
other. Find the radii of these balls if the sides of 
the triangle are equal to a, b, and c. 

7. Find the distance between the skew dia­
gonals of two neighbouring faces of a cube with 
edge a. In what ratio is each of these diagonals 
divided' by their common perpendicular? 

8. Prove that the area of the projection of a 
polygon situated in the plane a on the plane ~ 
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is equal to S cos <p, where S denotes the plane 
of the polygon and <p the angle between j the 
planes a and ~. 

9. Given three straight lines passing through 
one point A. Let Bl and B 2 be two points on 
one line, eland c 2 two points on the other, and 
Dl and D2 two points on the third line. Prove 
that 

V AB1C1D 1 _ 1 ABI I· 1 ACI 1 • 1 ADI 1 
V ABJCJDJ - 1 AB2 I· 1 AC2 1 • 1 AD2 1 • 

10. Let a, ~, and 'V denote the angles formed 
by an arbitrary straight line with three pairwise 
perpendicular lines. Prove that cos2 a + cos2 ~ + 
cos2 y = 1. 

11. Let Sand P denote the areas of two faces 
of a tetrahedron, a the length of their common edge, 
and a the dihedral angle between them. Prove 
that the volume Vof the tetrahedron can be found 
by the formula 
V- 2SP sin a; 

- 3 • ~ a 

12. Prove that for the volume V of an arbi­
trary tetrahedron the following formula is valid: 

V = ! abd sin <p, where a and b are two opposite 
edges of the tetrahedron, d the distance between 
them, and <p the angle between them. 

13. Prove that the plane bisecting the dihedral 
angle at a certain edge of a tetrahedron divides 
the opposite edge into parts proportional to the 
areas of the faces enclosing this angle. 

14. Prove that for the volume V of the poly­
hedron circumscri bed about a sphere of radius R 
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the following equality holds: V = ~ SnR, where 
Sn is the total surface area of the polyhedron. 

15. Given a convex polyhedron all of whose 
vertices lie in two parallel planes. Prove that 
its volume can be computed by the formula 

h 
V =6 (81 + 82 +4S), 

where S1 is the area of the face situated in one 
plane. S 2 the area of the face situated in the 
other plane, S the area of the section of the poly­
hedron by the plane equidistant from the two 
given planes, and h is the distance between the 
given planes. 

16. Prove that the ratio of the volumes of a 
sphere and a frustum of a cone circumscribed 
about it is equal to the ratio of their total sur­
face areas. 

17. Prove that the area of the portion of the 
surface of a sphere enclosed between two par­
allel planes cutting the sphere can be found by 
the formula 

S = 2nRh, 

where R is the radius of the sphere and h the dis­
tance between the planes. 

18. Prove that the volume of the solid generated 
by revolving a circular segment about a nonin­
tersecting diameter can be computed by the for­
mula 

V=i na2h , 
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where a is the length of the chord of this segment 
and h the projection of this chord on the dia­
meter. 

19. Prove that the line segments connecting 
the vertices of a tetrahedron with the median points 
of opposite faces intersect at one point (called 
the centre of gravity of the tetrahedron) and are 
divided by this point in the ratio 3 : 1 (reckon­
ing from the vertices). 

Prove also that the line segments joining the 
midpoints of opposite edges intersect at the same 
point and are bisected by this point. 

20. Prove that the straight lines joining the 
midpoint of the altitude of a regular tetrahedron 
to the vertices of the face on to which this al ti­
tude is dropped are pairwise perpendicular. 

21. Prove that the sum of the squared lengths 
of the edges of a tetrahedron is four times the sum 
of the squared distances between the midpoints 
of its skew edges. 

22. Given a cube ABCDAlBlClDl* with an 
edge a, in which K is the midpoint of the edge 
DD l • Find the angle and the distance between 
the straight lines CK and AlD. 

23. Find the angle and the distance between 
two skew medians of two lateral faces of a regu­
lar tetrahedron with edge a. 

24. The base of the pyramid SABCD is a quad­
rilateral ABeD. The edge SD is the altitude of 
the pyramid. Find the volume of the pyramid 
if it is known that I AB I = I BC I = V5, I AD I = 

* ABCD and A1B1C1D1 are two faces of the cube, 
AA 1, BBlt CCI , DD} are its edges. 



Sec. 1. Computational Problems 11 

I DC I = V2, I AC 1 = 2, I SA I + I SB I = 
2 + V5. 

25. The base of a pyramid is a regular tri­
angle with side a, the lateral edges are of length b. 
Find the radius of the ball which touches all 
the edges of the pyramid or their extensions. 

26. A sphere passes through the "Vertices of 
one of the faces of a cube and touches the sides 
of the opposite faces of the cube. Find the ratio 
of the volumes of the ball and the cube. 

27. The edge of the cube ABCDA1B 1C1D1 is 
equal to a. Find the radius of the sphere passing 
through the midpoints of the edges AA1 , BB1 , 

and through the vertices A and C 1-

28. The base of a rectangular parallelepi ped is 
a square with side a, the altitude of the parallel­
epiped is equal to b. Find the radius of the sphere 
passing through the end points of the side AB 
of the base and touching the faces of the parallel­
epiped parallel to AB. 

29. A regular triangular prism with a side of 
the base a is inscribed in a sphere of radius R. 
Find the area of the section of the prism by the 
plane passing through the centre of the sphere 
and the side of the base of the prism. 

30. Two balls of one radius and two balls of 
another radius are arranged so that each ball 
touches three other balls and a given plane. Find 
the ratio of the radii of the greater and smaller 
balls. 

31. Given a regular tetrahedron ABCD with 
edge a. Find the radius of the sphere passing 
through the vertices C and D and the midpoints 
of the edges AB and AC. 
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32. One face of a cube lies in the plane of the 
base of a regular triangular pyramid. Two vertices 
of the cube lie on one of the lateral faces of the 
pyramid and another two on the other two faces 
(one vertex per face). Find the edge of the cube 
if the side of the base of the pyramid is equal to a 
and the altitude of the pyramid is h. 

33. The dihedral angle at the base of a regular 
n-gonal pyramid is equal to a. Find the dihedral 
angle between two neighbouring lateral faces. 

34. Two planes are passed in a triangular prism 
ABCAlBlCl*: one passes through the vertices A, 
B, and Cl , the other through the vertices A l , 

B l , and C. These planes separate the prism into 
four parts. The volume of the smallest part is 
equal to V. Find the volume of the prism. 

35. Through the point situated at a distance a 
from the centre ~of a ball of radius R (R > a), 
three pairwise perpendicular chords are drawn. 
Find the sum of the squared lengths of the seg­
ments of the chords into which they are divided 
by the given point. 

36. The base of a regular triangular prism is a 
triangle ABC with side a. Taken on the lateral 
edges are points A l , B 1 , and Cl situated at dis­
tances a / 2, a, and 3a/2, respectively, from the 
plane of the base. Find the angle between the 
planes ABC and AlBlC1-

37. The side of the base of a regular quadran­
gular pyramid is equal to the slant height of a 
lateral face. Through a side of the base a cutting 
plane is passed separating the surface of the pyra-

• Here and henceforward, ABC and AIBICI are the 
bases of the prism and AA I , BBI , CCI its ateral edges. 
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mid into two equal portions. Find the angle 
between the cutting plane and the plane of the 
base of the pyramid. 

38. The centre of a ball is found in the plane 
of the base of a regular triangular pyramid. The 
vertices of the base lie on the surface of the ball. 
Find the length 1 of the line of intersection of the 
surfaces of the ball and pyramid if the radi us 
of the ball is equal to R, and the plane angle at 
the vertex of the pyramid is equal to a. 

39. In a regular hexagonal pyramid 8ABCDEF 
(8 the vertex), on the diagonal AD, three points 
are taken which divide the diagonal into four 
equal parts. Through these division points sec­
tions are passed parallel to the plane 8 AB. Find 
the ratios of the areas of the obtained sections. 

40. In a regular quadrangular pyramid, the 
plane angle at the vertex is equal to the angle 
between the lateral edges and the plane of the 
base. Determine the dihedral angles between the 
adjacent lateral faces of this pyramid. 

41. The base of a triangular pyramid all of 
whose lateral edges are pairwise perpendicular 
is a triangle having an area 8. The area of one 
of the lateral faces is Q. Find the area of the 
projection of this face on the base. 

42. ABCAIBICI is a regular triangular prism 
all of whose edges are equal to one another. K 
is a point on the edge AB different from A and 
B, M is a point on the straight line BICI, and 
L is a point in the plane of the face ACCIAI . 
The straight line KL makes equal angles with the 
planes ABC and ABBIAI , the line LM makes equal 
angles with the planes BCCIBI and ACCIAu 
the line KM also makes equal angles with the 
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planes BCClBl and ACClAl • It is known that 
I KL I = I KM I = 1. Find the edge of the 
prism. 

43. In a regular quadrangular pyramid, the 
angle between the lateral edges and the plane 
of the base is equal to the angle between a lateral 
edge and a plane of the lateral face not contain­
ing this edge. Find this angle. 

44. Find the dihedral angle between the base 
and a lateral face of a frustum of a regular tri­
angular pyramid if it is known that a ball can 
be inscribed in it, and, besides, there is a ball 
which touches all of its edges. 

45. Each of three edges of a triangular pyramid 
is equal to 1, and each of three other edges is 
equal to a. None of the faces is a regular tri­
angle. What is the range of variation of a? What 
is the volume of this pyramid? 

46. The lateral faces of a triangular pyramid 
are equivalent and are inclined to the plane of 
the base at angles a, ~, and y. Find the ratio of 
the radius of the ball inscribed in this pyramid 
to the radius of the ball touching the base of 
the pyrami d and the extensions of the three 
lateral faces. 

47. All edges of a regular hexagon al prism are 
equal to a (each). Find the area of the section 
passed through a side of the base at an angle a to 
the plane of the base. 

48. IB a rectangular parallelepiped ABCDA1 

B1ClDl , IABI = a, 1 AD I = b, I AAl I = c. Find 
the angle between the planes ABIDI and AICID. 

49. The base of the pyramid ABCDM is a square 
with base a, the lateral edges AM and BM are 
also equal to a (each). The lateral edges CM 
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and D M are of length b. On the face CD M as 
on the base a triangular pyramid CDMN is con­
structed outwards, each lateral edge of which has 
a length a. Find the distance between the 
straight lines AD and M N. 

50. In a tetrahedron, one edge is equal to a, 
the opposite edge to b, and the rest of the edges 
to c. Find the radius of the circumscribed ball. 

51. The base of a triangular pyramid is a 
triangle with sides a, b, and c; the opposite lat­
eral edges of the pyramid are respectively equal 
to m, n, and p. Find the distance from the vertex 
of the pyramid to the centre of gravity of the 
base. 

52. Given a cube ABCDAlBlClDl; through 
the edge AA 1 a plane is passed forming equal 
angles with the straight lines BCI and BlD. Find 
these angles. 

53. The lateral edges of a triangular pyramid 
are pairwise perpendicular, one of them being the 
sum of two others is equal to a. Find the radius of 
the ball touching the base of the pyramid and 
the extensions of its lateral faces. 

54. The base of a triangular pyramid SABC is 
a regular triangle ABC with side a, the edge SA 
is equal to b. Find the volume of the pyramid if 
it is known that the lateral faces of the pyramid 
are equivalent. 

55. The base of a triangular pyramid SABC 
A 

is an isosceles triangle ABC (A = 90°). Tlle angles 
~ ~ ~ ~ 
SAB, SCA, SAC, SBA (in the indicated or-
der) form an arithmetic progression whose differ­
ence is not equal to zero. The areas of the faces 
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SAB, ABC and SAC form a geometric progres­
sion. Find the angles forming an arithmetic pro­
gression. 

56. The base of a triangular pyramid SABC 
is a regular triangle ABC with side a. Find the 

~ 
volume of this pyramid if it is known that ASC = 
./"'-... ./"'.... 

ASB = a, SAB = p. 
57. In the cube ABCDA1B1C1D1 K is the mid­

point of the edge AA1 , the point L lies on the 
edge BC. The line segment KL touches the ball 
inscribed in the cube. In what ratio is the line 
segment KL divided by the point of tangency? 

/'... 
58. Given a tetrahedron ABCD in which ABC= 

/'... 
BAD = 900 • I AB I = a, I DC I = b, the angle 
between the edges AD and BC is equal to a. 
Find the radius of the circumscribed ball. 

59. An edge of a cube and an edge of a regular 
tetrahedron lie on the same straight line, the 
midpoints of the opposite edges of the cube and 
tetrahedron coincide. Find the volume of the 
common part of the cube and tetrahedron if the 
edge of the cube is equal to a. 

60. In what ratio is the volume of a triangu­
lar pyramid divided by the plane parallel to its 
two skew edges and dividing one of the other 
edges in the ratio 2 : 1? 

61. In a frustum of a regular quadrangular pyr .. 
amid two sections are drawn: one through the 
diagonals of the bases, the other through the side 
of the lower base and opposite side of the upper 
base. The angle between the cutting planes is 
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equal to a. Find the ratio of the areas of the 
sections. 

62. One cone is inscribed in, and the other is 
circumscribed about, a regular hexagonal pyra­
mid. Find the difference between the volumes of 
the circumscribed and inscribed cones if the alti 
tude of the pyramid is H and the radius of the 
base of the circumscribed cone is R. 

63. Given a ball and a point inside it. Three 
mutually perpendicular planes intersecting the 
ball along three circles are passed through this 
point in an arbitrary way. Prove that the sum 
of the areas of these three circles is constant, and 
find this sum if the radius of the ball is R and the 
distance from the point of intersection of the 
planes to the centre of the ball is equal to d. 

64. In a ball of radius R the diameter AB 
is drawn. Two straight lines touch the ball at 
the points A and B and form an angle a (a < 90°) 
between themselves. Taken on these lines are 
points C and D so that CD touches the ball, and 
the angle between AB and CD equals <p (<p < 90°). 
Find the volume of the tetrahedron ABCD. 

65. In a tetrahedron two opposite edges are 
perpendicular, their lengths are~a and b, the dis­
tance between them is c. Inscribed in the tetra­
hedron is a cube whose four edges are perpendicu ... 
lar to these two edges of the tetrahedron, ex actly 
two vertices of the 'cube lying on each face of 
the tetrahedron. Find the edge of the cube. 

66. Two congruent, triangles KLM and KLN 
/"... ~ 

have a common side KL, KLM = LKN = 1'£13, 
I KL I = a, I LM I = I KN I = 6a. The planes 
KLM and KLN are mutually perpendicular. A 

2-0"9 
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ball touches the line segments LM and KN at 
their midpoints. Find the radius of the ball. 

67. A ball of radius R touches all the lateral 
faces of a triangular pyramid at the midpoints of 
the sides of its base. The line segment joining the 
vertex of the pyramid to the centre of the ball 
is bisected by the point of intersection with the 
base of the pyramid. Find the volume of the pyra­
mid. 

68. A tetrahedron has three right dihedral an­
gles. One of the line segments connecting the mid­
points of opposi te edges of the tetrahedron is equal 
to a, and the other to b (b > a). Find the length 
of the greatest edge of the tetrahedron. 

69. A right circular cone with vertex S is in­
scribed in a triangular pyramid SPQR so that 
the circle of the base of the cone is inscribed in 
the base PQR of the pyramid. It is known that 
/'..... ~ ~ 

PSR = n12, SQR = n/4, PSQ = 7n/12. Find 
the ratio of the lateral surface area of the cone 
to the area of the base PQR of the pyramid. 

70: The base of the pyramid ABCDE is a par­
allelogram ABeD. None of the lateral faces is 
an obtuse triangle. On the edge DC there is 
a point M such that the straight line EM is per­
pendicular to BC. In addition, the diagonal of the 
base.{iC and the lateral edges ED and EB are relat-

ed as follows: 1 AC 1 ~t 1 EB I ~ ~ 1 ED I. A 
section repre~enting an isosceles trapezoid is 
passed through the vertex B and the midpoint of 
one 9f the lateral edges. Find the ratio of the 
area of the section to the area of the base of the 
pyramid. 
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71. A line segment AB of unit length which is 
a chord of a sphere of radius 1 is at an angle n/3 
to the diameter CD of this sphere. The distance 
from the end point C of the diameter to the nearer 
end point A of the chord A B is equal to -V 2. 
Determine the length of the line segment BD. 

72. In a triangular pyramid ABCD the faces 
ABC and ABD have areas p and q, respectively, 
and form an angle a between themselves. Find 
the area of the section of the pyramid passing 
through the edge AB and the centre of the ball 
inscribed in the pyramid 

73. In a triangular pyramid ABCD a section 
is passed through the edge AD (I AD I = a) 
and point E (the midpoint of the edge BC). The 
section makes with the faces ACD and ADB 
angles respectively equal to a and ~. Fin d the 
volume of the pyramid if the area of the section 
ADE is equal to S. 

74. ABCD is a regular tetrahedron with edge a. 
Let M be the centre of the face ADC, and let N 
be the midpoint of the edge BC. Find the radius 
of the ball inscribed in the trihedral angle A 
and touching the straight line M N. 

75. The base of a triangular pyramid ABCD 
is a regular triangle ABC. The face BCD makes 
an angle of 60° with the plane of the base. The 
centre of a circle of unit radius which touches 
the edges AB, A C, and the face BCD lies on the 
straight line passing through the point D per­
pendicular to the bas,a. The altitude of the pyra­
mid D H is one-half the side of the base. Find 
the volume of the pyramid. 

76. In a triangular pyramid SABC I AC I = 
1 AB 1 and the edge SA is inclined to the planes 
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of the faces ABC and S BC at angles of 45°. It is 
known that the vertex A and the midpoints of all 
the edges of the pyramid, except SA, lie on the 
sphere of radius 1. Prove that the centre of the 
sphere is located on the edge SA, and find the 
area of the face ASC. 

77. Given a cube ABCDAlBlClDl with edge a. 
Find the radius of the sphere touching the line 
segments ACl and CCv the straight lines AB 
and BC and intersecting the straight lines AC 
and AlCl . 

78. A ball touches the plane of the base ABCD 
of a regular quadrangular pyramid SABCD at 
the point A, and, besides, it touches the ball 
inscribed in the pyramid. A cutting plane is 
passed through the centre of the first ball and the 
side BC of the base. Find the angle of inclination 
of this plane to the plane of the base if it is known 
that the diagonals of the section are perpen­
dicular to the edges SA and SD. 

79. Situated on a sphere of radius 2 are three 
circles of radius 1 each of which touches the other 
two. Find the radius of the circle which is smal­
ler than the given circles, lies on the given sphere, 
and touches each of the given circles. 

80. In a given rectangular parallelepiped 
ABCDAlBlClDl the lengths of the edges AB, 
BC, a.nd BBl are respectively equal to 2a, a, 
and a; E is the midpoint of the edge BC. The 
vertices M and N of a regular tetrahedron M N PQ 
lie on the straight line ClE, the vertices P and 
Q on the straight line passing through the point Bl 
and intersecting the straight line AD at the 
point F. Find: (a) the length of the line segment 
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DF; (b) the distance between the midpoints of 
the line segments M Nand PQ. 

81 . The length of the edge of a cube 
ABCDAlBlClDl is a. The points M and N lie 
on the line segments BD and CCl , respectively. 
The straight line MN makes an angle n/4 with 
the plane ABCD and an angle n/6 with the plane 
BBlClC. Find: (a) the length of the line seg­
ment MN; (b) the radius of the sphere with centre 
on the line segment M N which touches the planes 
ABCD and BBtClC. 

82. The vertex A of a regular prism ABCA1B1Cl 
coincides with the vertex of a cone~ the vertices 
Band C He on the lateral surface of this cone, 
and the vertices Bl and C 1 on the circle of its 
base. Find the ratio of the volume of the cone and 
the prism if I AAl I = 2.4 , AB I. 

83. The length of the edge of a cube 
ABCDA 1Bl ClD l is equal to a. The points P, 
K, L are midpoints of the edges AA]t AlDl , 
RlCl , respectively; the point Q is the centre of 
the face CClDlD. The line segment MN with 
end points on the straight lines AD and KL 
intersects the line PQ and is perpendicular to it. 
Find the length of this line segment. 

84. In a regular prism ABCAlBlCl the length 
of a lateral edge and the altitude of the base is 
equal to a. Two planes are passed through the 
vertex A: one perpendicular to the straight line 
ABl , the other perpendicular to the line ACl . 
Passed through the vertex Al are also two planes: 
one perpendicular to the line AlB, the other 
perpendicular to the line AlC. Find the volum*:' of 
the polyhedron bounded by these four planes ancl" 
t4e plane BBlC,C, -
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85. The point 0 is a common vertex of two 
congruent cones si tu ated on one side of the plane a 
so that only one element of each cone (OA for 
one cone and OB for the other) belongs to the 
plane a. I t is known that the size of the angle 
between the altitudes of the cones is equal to p, 
and the size of the angle between the altitude 
and generatrix of the cone is equal to cp, and 
2cp < ~. Find the size of the angle between the 
element OA and the plane of the base of the other 
cone to which the point B belongs. 

86. Arranged inside a regular tetrahedron 
ABCD are two balls of radii 2R and 3R exter­
nally tangent to each other, one ball being in­
scribed in the trihedral angle of the tetrahedron 
with vertex at the point A, and the other in the 
trihedral angle with vertex at the point B. Find 
the length of the edge of this tetrahedron. 

87. In a regular quadrangular pyramid SABCD 
with base ABCD, the side of the base is equal to 
a, and the angle between the lateral edges and 
the plane of the base is equal to a. The plane 
parallel to the diagonal of the base AC and the 
lateral edge BS cuts the pyramid so that a circle 
can be inscribed in the section obtained. Deter­
mine the radius of this circle. 

88. Each edge of a regular tetrahedron is equal 
to a. A plane P passes through the vertex Band 
midpoints of the edges AC and AD. A ball 
touche's the straight lines AB, AC, AD and the 
portion of the plane P enclosed inside the tetra­
hedron. Find the radius of the ball. 

89. In a regular tetrahedron, M and N are 
midpoints of two opposite edges. The projection 
of the t~tfalleclron OIl a plane parallel to M!V 
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is a quadrilateral having area S one of the angles 
of which is equal to 60°. Find the surface area 
of the tetrahedron. 

90. In a cube ABCDAlBlClDl a point M i~ 
taken on AC, and on the diagonal BDl of the 

.,/"... 
cube a point N is taken so that NMC = 60°, 
/""... 

MNB = 45°. In what ratios are the line seg-
ments AC and BDl divided by the points M and 
N? 

91. The base of a right prism ABCDAlBlClDl 
is an isosceles trapezoid ABCD in whioh AD 
is parallel to BC, I AD III BC I = n, n > 1. 
Passed through the edges AAl and BC are planes 
parallel to the diagonal BlD; and through the 
edges DDl and Bl Cl planes parallel to the dia­
gonal AlC. Determine the ratio of the volume 
of the triangular pyramid bounded by these four 
planes to the vol ume of the prism. 

92. The side of the base of a regular triangular 
prism ABCAlBlCl is equal to a. The points M 
and N are the respective midpoints of the edges 
AlBI and AAl . The projection of the line seg-
ment BM on the line C]N is equal to aI2VS. 
Determine the altitude of the prism. 

93. Two balls touch each other and the faces 
of a dihedral angle whose size is a. Let A and B 
be points at which the balls touch the faces (A 
and B belong to different balls and different faces). 
In what ratio is the line segment AB divided 
by the points of intersection with the surfaces of 
the balls? 

94. The base of a pyramid ABCD is a regular 
~rlangle ABC with side of length 12. The edge BD 

... - '" 
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is perpendicular to the plane of the base and is 
equal to 10 V 3. All the vertices of this pyramid 
lie on the lateral surface of a right circular cylin­
der whose axis intersects the edge BD and the 
plane ABC. Determine the radius of the cylinder. 

95. The base of a pyramid is a square ABCD 
with side a; the lateral edge SC is perpendicular 
to the plane of the base and is eq ual to b. M is 
a point on the edge AS. The points M, B, and D 
lie on the lateral surface of a right circular cone 
with vertex at the point A, and the point C in 
the plane of the base of this cone. Determine the 
area of the lateral surface of the cone. 

96. Inside a right circular cone a cube is arranged 
so that one of its edges lies on the diameter 
of the base of the cone; the vertices of the cube not 
belonging to thi.s edge lie on the lateral surface 
of the cone; the centre of the cube lies on the alti­
tude of the cone. Find the ratio of the volume of 
the cone to the volume of the cube. 

97. In a triangular prism ABCAlBlCl , two 
sections are passed. One section passes through 
the edge AB and midpoint of the edge CCl , the 
other passing through the edge AlBl and the mid­
point of the edge CB. Find the ratio of the length 
of the line segment of the intersection line of 
these sections enclosed inside the prism to the 
length of the edge AB. 

98. In the tetrahedron ABCD the edge AB 

. d' I ,/'"". /"-
IS perpen lCU ar to the edge CD, A CB = AD B, 
the area of the section passing through the edge 
AB and the midpoint of the edge DC is"equal to 
S, I DC I = a. Find the volume of t~e tetra­
hedron A BCD. 
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99. Given a regular triangular pyramid SABC 
(S its vertex). The edge SC of this pyramid coin­
cides with a lateral edge of a regular triangular 
prism A lBlCA 2B 2S (AlA2' BlB2 and CS are 
lateral edges, and AlBlC is one of the bases). The 
vertices A 1 and Bl lie in the plane of the face 
SAB of the pyramid. What part of the volume 
of the entire pyramid is the volume of the portion 
of the pyramid lying inside the prism if the ratio 
of the length of the lateral edge of the pyramid 
to the side of its base is equal to 2rV3? 

100. In a frustum of a regular quadrangular 
pyramid with the lateral edges AA l , BB l , CCl , 

DDl , the side of the upper base AlBlClD1 is equal 
to 1, and the side of the lower base is equal to 7. 
The plane passing through the edge BlCl perpen­
dicular to the plane ADlC separates the pyramid 
into two parts of equal volume. Find the volume 
of the pyramid. 

101. The base of the prism A BCA lBlC1 is a reg­
ular triangle ABC with side a. The projection 
of the prism on the plane of the base is a trape­
zoid with lateral side AB and area which is twice 
the area of the base. The radius of the sphere pas­
sing through the vertices A, B, A l , Cl is equal 
to a. Find the volume of the prism. 

102. Given in a plane is a square ABCD with 
side a and a point M lying at a distance b from 
its centre. Find the sum of the volumes of the 
solids generated by revolving the triangles ABM, 
BCM, CDM, and DAM about the straight lines 
AB, BC, CD and DA, respectively. 

103. D is the midpoint of the edge AlCl of 
Sl re¥ular trian~ular prism ABCAlBlCr A re~ulaf 
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triangular pyramid SMNP is situated so that 
the plane of its base MNP coincides with the 
plane ABC, the vertex M lies on the extension of 

1 
AC and 1 CM 1 = T 1 AC I, the edge SN passes 
through the point D, and the edge SP intersects 
the line segment BBl. In what ratio is the line 
segment BBl divided by the point of intersection? 

104. The centres of three spheres of radii 3, 
4, and 6 are situated at the vertices of a regular 
triangle with side 11. How many planes are there 
which simultaneously touch all the three spheres? 

105. All the plane angles of a trihedral angle 
N KLM (N the vertex) are right ones. On the 
face LN M a point P is taken at a distance 2 
from the vertex N and at a distance 1 from the 
edge MN. From some point S situated inside the 
trihedral angle N KLM a beam of light is directed 
towards the point P. The beam makes an angle 
n/4 with the plane MNK and equal angles with 
the edges K Nand M N. The beam is mirror­
reflected from the faces of the angle N K LM first 
at the point P, then at the point Q, and then at 
the point R. Find the sum of the lengths of the 
line segments PQ and QR. 

106. The base of a triangular pyramid ABCD 
A A 

is a triangle ABC in which A = n/2, C = n16, 
I BC 1 = 2 V 2". The edges AD, BD, and CD 
are of the same length. A sphere of radius 1 touches 
the edges AD, BD, the extension of the edge 
CD beyond the point D, and the plane ABC. 
Find the length of the line segment of the tangent 
drawn from the point A to the sphere. 

107, Tllree pa~lsl amoni which tije:r~ ~:re t'Y"q 
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equal balls, touch a plane P and, besides, pair­
wise touch one another. The vertex of a right 
circular cone belongs to the plane P, and its 
axis is perpendicular to this plane. All the three 
balls are arranged outside of the cone and each of 
them touches its lateral surface. Find the cosine 
of the angle between the generatrix of the cone 
and the plane P if it is known that in the tri­
angle with vertices at the points of tangency of 
the balls with the plane one of the angles is equal 
to 150°. 

10R. The volume of the tetrahedron ABCD 
is equal to 5. Through the midpoints of the edges 
AD and BC a plane is passed cutting the edge 
CD at the point M. And the ratio of the lengths 
of the line segments DM and CM is equal to 
2/3. Compute the area of the section of the tetra­
hedron by the plane if the distance from it to 
the vertex A is equal to 1. 

109. A ball of radius 2 is inscribed in a regular 
triangular pyramid SABC with vertex S and base 
ABC; the altitude of the pyramid SKis equal 
to 6. Prove that there is a unique plane cutting 
the ed~es of the baseAB and BC at some points M 
and N, such that I M N I = 7, which touches the 
ball at the point equidistant from the points M 
and N and intersects the extension of the altitude 
of the pyramid S K beyond the point K at some 
point D. Find the length of the line segment SD. 

110. All the edges of a triangular pyramid 
ABCD are tangent to a sphere. Three line seg­
ments joining the midpoints of skew edges have 
the same length. The angle A BC is equal to 100°. 
Find the ratio of the altitudes of the pyram~q 
c:Jraw~ frq~ tile vertices 4. aQ~ B; 
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111. In a pyramid SABC the products of the 
lengths of the edges of each of the four faces are 
equal to one and the same number. The length 
of the altitude of the pyramid dropped from S 

on to the face ABC is equal to 2 V ~O;, and the 
size of the angle CAB is equal to 

arccos (! V ~). Find the vol ume of the 
pyramid SABC if 

I SA 12 + 1 SB !2 - 5 1 SC 12 = 60. 
112. Given in a plane P is an isosceles tri­

angle ABC (I AB 1 = 1 BC 1 = 1, 1 AC 1 = 2a). 
A sphere of radius r touches the plane P at point 
B. Two skew lines pass through the points A 
and C and are tangent to the ball. The angle 
between either 'of these lines and the plane P 
is equal to a. Find the distance between these 
lines. 

113. The base of a pyramid ABCEH is a con­
ve'X quadrilateral ABCE which is separaterl by 
the diagonal BE into two equivalent triangles. 
The length of the edge A B is equal to 1, the lengths 
of the edges BC and CE are equal to each 
other. The sum of the lengths of the edges AH 
and EH is equal to V2". The volume of the pyra­
mid is 1/6. Find the radius of the sphere having 
the grefltest volume among all the balls housed 
in the pyramid. 

114. In a pyramid SABC a straight line inter­
secting the edges AC and BS and perpendicular 
to them passes through the midpoint of the edge 
BS. The face ASB is equivalent to the face BSC, 
find t~e ~r~~ of the fac~ ASC is ~)Vj.ce t~e ~rea Qf 
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the face BSC. Inside the pyramid there is a point 
M, and the sum of the distances from this point 
to the vertices Band S is equal to the sum of the 
distances to all the faces of the pyrami d. Find 
the distance from the point M to the vertex B 
if I AC I = VB, I BS I = 1. 

115. The base of a pyramid is a rectangle with 
acute angle between the diagonals a (a < 60°), 
its lateral edges are of the same length, and the 
altitude is h. Situated inside the pyramid is a 
triangular pyramid whose vertex coincides with 
the vertex of the first pyramid, and the vertices 
of the base lie on three sides of the rectangle. 
Find the volume of the quadrangular pyramid if 
all the edges of the triangular pyramid are equal to 
one another, and the lateral faces are equivalent. 

116. In a triangular pyramid SABC with hase 
ABC and equal lateral edges, the sum of the 
dihedral angles with edges SA and SC is equal 
to 180°. It is known that I AB I = a, I BC I = b. 
Find the length of the lateral edge. 

117. Given a regular tetrahedron with edge a. 
A sphere touches three edges of the tetrahedron, 
emanating from one vertex, at their end points. 
Find the area of the portion of the spherical sur­
face enclosed inside the tetrahedron. 

118. Three circles of radius Y2 pairwise touch­
ing one another are situated on the surface 
of a sphere of radius 2. The portion of the sphere's 
surface situated outside of the circles pres en ts 
two curvilinear triangles. Find the areas of 
these triangles. 

119. Three dihedral angles of a tetrahedron, 
not belonging to one vertex, are equal to n/2. 
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The remaining three dihedral angles are equal 
to one another. Find these angles. 

120. Two balls are inscribed in the lateral 
surface of a cone and touch each other. A third 
sphere passes through two circles along which the 
first two spheres touch the surface of the cone. 
Prove that the volume of the portion of the third 
ball situated outside of the cone is equal to the 
volume of the portion of the cone enclosed be­
tween the first two balls inside the cone. 

121. A sphere of radius R touches one base of 
a frustum of a Cone and its lateral surface along 
the circle coinciding with the circle of the other 
base of the cone. Find the volume of the solid 
representing a combination of a cone and a ball 
if the total surface area of this solid is equal to 8. 

122. Two triangles, a regular one with side a 
and a right isosceles triangle with legs equal 
to b, are arranged in space so that their centroids 
coincide. Find the sum of the squared distances 
from all the vertices of one of them to all the 
vertices of the other. 

123. In a regular triangular pyramid SABC 
(8 the vertex), E is the midpoint of the slant 
height of the face SBC, and the points F, L, 
and M lie on the edges AB, AC, and 8C, respec-

tively, and I AL I = 1~ I AC I. It is known that 
EF LM is an isosceles trapezoid and the length 
of its base EF is equal to y7'. Find the volume 
of the pyramid. 

124. Given a cube ABCDA1B1C1D1 with edge a. 
The bases of a cylinder are inscribed in the faces 
ABCD and A tBtCIDl " Let M be a point on the 
edge AB such that I AM I = a13, N a point on 
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the edge BlCl such that I NC l I = a14. Through 
the points Cl and M there passes a plane touch­
ing the bases of the cylinder inscribed in A BCD, 
and through A and N a plane touching the base 
inscribed in AlBlClDl . Find the volume of the 
portion of the cylinder enclosed between the 
planes. 

125. Determine the total surface area of the 
prism circumscribed about a sphere if the area of 
its base is equal to 8. 

126. The centre of sphere a lies on the surface 
of sphere ~. The ratio of the surface area of sphere ~ 
lying inside sphere a to the total surface area of 
sphere ci is equal to 1/5. Find the ratio of the radii 
of spheres a and ~. 

127. Circumscribed about a ball is a frustum 
of a cone. The total surface area of this cone is 8. 
AnGther sphere touches the lateral surface of 
the cone along the circle of the base of the cone. 
Find the volume of the frustum of a cone if it 
is known that the portion of the surface of the 
second ball contained inside the first ball has 
an area Q. 

128. Circumscribed about a ball is a frustum 
of a cone whose bases are the great circles of two 
other balls. Determine the total surface area of 
the frustum of a cone if the sum of the surface 
areas of the three balls is equal to 8. 

129. A section of maximal area is passed 
through the vertex of a right circular cone. It is 
known that the area of this section is twice the 
area of an axial section. Find the vertex angle 
of the axial section of the cone. 

130.. Inscribed in a cone is a triangular pyra­
mid 8ABC (8 coincides with the vertex of the 



32 Problems in Solid Geometry 

cone, A, B, and C lie on the circle of the base of 
the cone), the dihedral angles at the edges SA, 
SBt and SC are respectively equal to a, ~, and y. 
Find the angle between the plane SBC and the 
plane touching the surface of the cone along the 
element SC. 

131. Three points A, B, and C lying on the 
surface of a sphere of radius R are pairwise con­
nected by arcs of great circles; the arcs are less 
than a semicircle. Through the midpoints of the 

-...-- '-'" 
arcs AB and AC one more great circle is drawn 

'-'" 
which intersects the continuation of BC at the 

'-'" ........" 

point K. Find the length of the arc CK if I Be I = 
l (1 < :rtR). 

132. Find the volume of the solid generated 
by revolving a regular triangle with side a about 
a straight line parallel to its plane and such that 
the projection of this line on the plane of the 
triangle con tains one of the al ti tudes of the 
triangle. 

133. Consider the solid consisting of points 
si tuated at a distance not exceeding d from an 
arbitrary point inside a plane figure having a 
perimeter 2p and area S or on its boundary. 
Find the volume of this solid. 

134. Given a triangular pyramid SABC. A ball 
of radius R touches the plane ABC at the point C 
and the edge SA at the point S. The straight 
line BS intersects the ball for the second time 
at the point opposite to the point C. Find the 
volume of the pyramid SABC if I BC I = a, 
I SA I = b. 

135. Inside a regular triangular pyramid there 
is a vertex of a trihedral angle all of whoae plane 
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angles are right ones, and the bisectors of the 
plane angles pass through the vertices of the base. 
In what ratio is the volume of the pyramid di­
vided by the surface of this angle if each face 
of the pyramid is separated by it into two equiv­
alent portions? 

136. Given a parallelepiped ABCDAlBlClD1 
whose volume is V. Find the volume of the com­
mon portion of two tetrahedrons ABICDl and 
AlBClD. 

137. Two equal triangular pyramids each hav ... 
ing volume V are arranged in space symmetri­
cally with respect to the point o. Find the volume 
of their common portion if the point 0 lies on 
the line segment joining the vertex of the pyra­
mid to the centroid of the base and divides this 
line segment in the ratio: (1) 1 : 1; (2) 3 : 1; 
(3) 2 : 1; (4) 4 : 1, reckoning from the vertex. 

138. A regular tetrahedron of volume V is rotat­
ed about the straight line joining the midpoints 
of its skew edges at an angle~a. Find the volume 
of the common portion of the given and turned 
tetrahedrons (0 < a < n). 

139. The edge of a cube is a. The cube is rotat­
ed about the diagonal through an angle a. 
Find the volume of the common portion of the 
original cube and the cube being rotated. 

140. A ray of light falls on a plane mirror at an 
angle a. The mirror is rotated about the projec­
tion of the beam on the mirror through an angle ~. 
By what angle will the reflected ray deflect? 

141. Given in space are four points: A, B, C, 
~ 

and D, where lAB 1 = I BC I = I CD I, ABC = 
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../'... ~ 
BCD = CD A = a. Find the angle between the 
straight lines AC and BD. 

142. Given a regular n-gonal prism. The area 
of its base is equal to S. Two planes cut all the 
lateral edges of the prism so that the volume 
of the porti on of the prism enclosed between the 
planes is equal to V. Find the sum of the lengths 
of the segments of the lateral edges of the prism 
enclosed between the cutting planes if it is known 
that the planes have no common points inside 
the prism. 

143. Three successive sides of a plane convex 
pentagon are equal to 1, 2,. and a. Find the two 
remaining sides of this pentagon if it is known 
that the pentagon is an orthogonal projection on 
the plane of regular pentagon. For what values 
of a does the problem have a solution? 

144. Given a cube ABCDAlBlClDl in which M 
is the centre of the face ABBlAl , N a point on 
the edge BlCl , L the midpoint of AlBl , K the 
foot of the perpendicular dropped from N on 
BCl • In what ratio is the edge BlCl divided 

~ ~ 
by the point N if LM K = M KN? 

145. In a regular hexagonal pyramid the centre 
uf the circumscribed sphere lies on the surface 
of the inscribed sphere. Find the ratio of the 
radii of the circumscribed and inscribed spheres. 

146. In a regular quadrangular pyramid, the 
centre of the circumscribed ball lies on the sur­
face of the inscribed ball. Find the size of the 
plane angle at the vertex of the pyramid. 

147.The base of a quadrangular pyramid SABCD 
is a square ABCD with side a. Both angles be-



~ec. 1. Computational Problems 35 

ween opposite lateral faces are equal to a. Find 
he volume of the pyramid 

148. A plane cutting the surface of a triangular 
Iyramid divides the medians of faces emanating 
~om one vertex in the following ratios: 2 : 1, 
: 2, 4: 1 (as measured from the vertex). In 

rhat ratio does this plane divide the volume of 
flis pyramid? 

149. n congruent cones have a common vertex. 
~ach one touches its two neighbouring cones along 
n element, and all the cones touch the same plane. 
'ind the angle at the vertex of the axial sections 
f the cones. 

150. Given a cube ABCDAlBlClDl . The plane 
assing through the point A and touching the 
all insc~ibed in the cube cn ts the edges AlBl 
nd AlDl at points K and N. Determine the size 
f the dihedral angle between the planes AClK 
nd AClN 

151. Given a tetrahedron ABCD. Another 
~trahedron AlBlClDl is arranged so that its 
ertices Al , Bl , Cl , Dl lie respectively in the 
lanes BCD, CDA, DAB, ABC, and the planes 
f its faces AlBlCl , BlClDl , ClDlAl , DlAIBl 
ontain the respective vertices D, A, B, and C 
f the tetrahedron ABCD. It is also known that 
Ie point Al coincides with the centre of gravity 
f the triangle BCD, and the straight lines BDl , 

'Bl , an.d DCl bisect the line segments AC, AD, 
nd AB, respectively. Find the volume of the 
)mmon part of these tetrahedrons if the volume 
f the tetrahedron ABCD is equal to V. 
152. In the tetrahedron ABCD: 1 BC I = 

CD I = I DA I, 1 BD 1 = I AC I, I BD 1 > 
BC I, the dihedral angle at the edge AB is 
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equal to n13. Find the sum of the remaining di­
hedral angles. 

153. Given a triangular prism ABCAlBtCl • 
It is known that the pyramids ABCCl , ABBlCl , 
and AAlBlCl are congruent. Find the dihedral 
angles between the plane of the base and the lateral 
faces of the prism if its base is a nonisosceles right 
triangle. 

154. In a regular tetrahedron ABCD with 
edgela, taken in the planes BCD, CDA, DAB, 
and ABC are the respective points A l , Bl , Cl , 

and Dl so that the line AlBl is perpendicular to 
the plane BCD, BlCl is perpendicular 'to the plane 
CDA, ClDl is perpendicular to the plane DAB, 
and finally, DlAl is perpendicular to the plane 
ABC. Find the volume of the tetrahedron 
AlBlCtDt • 

155. n congruent balls of radius R touch inter­
nally the lateral surface and the plane of the 
base of a cone, each ball touching two neigh­
bouring balls; n halls of radius 2R are arranged 
in a similar way touching externally the lateral 
surface of the cone. Find the volume of the cone. 

156. Given a cube ABCDAlBlClDl . The points 
M and N are taken on the line segments AAl 
and BCl so that the line MN intersects the line 
BlD. Find 

) Bel I 
IBN) 

i AM) 
I AA1 ) • 

157. T t is known that all the faces of a tetra­
hedron are similar triangles, but not all of them 
are congruent. Besides, any two faces have at 
least one pair of congruent edges not counting 
a common edge. Find the volume of \his tetra-
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hedron if the lengths of two edges lying in one 
face are equal to ~ and 5. 

158. Given three mutually perpendicular lines, 
the distance between any two of them being equal 
to a. Find the volume of the parallelepiped whose 
diagonal lies on one line, and the diagonals of 
two adjacent faces on two other lines. 

159. The section of a regular quadrangular pyr­
amid by some cutting plane presents a regular 
pentagon with side a.Find the volume of the pyra­
mid. 

160. Given a t.riangle ABC whose area is S, 
and the radius of the circumscribed circle is R. 
Erected to the pI ane of the triangle at the verti­
ces A, B, and C are three perpendiculars, and 
points AI' Bh and Cl are taken on them so that 
the line segments AA l , BBl! CCl are equal in 
length to the respective altitudes of the tri­
angle dropped from the vertices A, B, and C. 
Find the volume of the pyramid bounded by the 
planes AIBlC. AIBCh ABIC12 and ABC. 

Section 2 

Problems on Proof 

161. Do the altitudes intersect at one point in 
any tetrahedron? 

162. Is there a triangular pyramid such that 
the feet of all the altitudes lie outside the corre­
sponding faces? 
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163. Prove that a straight line making equal 
angles with three intersecting lines in a plane 
is perpendicular to this plane. 

164. What regular polygons can be obtained 
when a cube is cut hy a plane? 

165. Prove that the sum of plane angles of a 
trihedral angle is less than 2n, and the sum of 
dihedral angles is greater than n. 

166. Let the plane angles of a trihedral angle 
be equal to a, ~, and ,\1, and the opposite dihedral 
angles to A, B, and C, respectively. Prove that 
the fol1owing eqll alities hold trlle~ 

(1) sin ex sin P sin y 
sinA - sinB sin C 

(theorem of sines for a trihedral angle), 

(2) cos a = cos ~ cos '¥ + sin ~ sin '¥ cos A 

(first theorem of cosines for a trihedral angle), 

(3) cos A = -cos B cos C + sin B sin C cos a 

(second theorem of cosines for a trihedral angle). 
167. Prove that if all the plane angles of a 

trihedral angle are obtuse, then all the dihedral 
angles are also obtuse. 

168. Prove that if in a trihedral angle all the 
dihedral angles are acute, then all the plane an­
gles are also acute. 

169. Prove that in an arbitrary tetrahedron 
there is a trihedral angle all plane angles of 
which are acute. 

170. Prove that in an arbitrary polygon all 
faces of which are triangles there is an edge such 
that all the plane angles adjacent to it are acute. 
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171. Prove that a trihedral prismatic surface 
can be cut by a plane in a regular triangle. 

172. In a triangular pyramid all the plane 
angles at the vertex A are right angles, the edge 
AB is equ al to the sum of two other edges ema­
nating from A. Prove that the sum of the plane 
angles at the vertex B is equal to n/2. 

173. Can any trihedral angle be cut by a plane 
in a regular triangle? 

174. Find the plane angles at the vertex of a 
trihedral angle if it is known that any of its 
sections by a plane is an acute triangle. 

175. Prove that in any tetrahedron there is a 
vertex such that from the line segments equal 
to the lengths of the edges emanating from this 
vertex a triangle can be constructed. 

176. Prove that any tetrahedron can be cut by 
a plane into two parts so that the obtained pieces 
can be brought together in a different way to 
form the same tetrahedron. 

177. Find the plane angles at the vertex of a 
trihedr al angle if it is known that there exists 
another trihedral angle with the same vertex 
whose edges lie in the planes forming the faces 
of the given angle and are perpendicular to the 
opposi te edges of the gi ven angle. 

178. A straight line l makes acute angles a, 
~, and "y with three mutually perpendicular 
lines. Prove that a + ~ + ~ < n. 

179. Prove that the sum of the angles made 
by the edges of a trihedral angle with opposite 
faces is less than the sum of its plane angles. 

Prove also that if the plane angles of a tri­
hedral angle are acute, then the sum of the angles 
made by its edges with opposite faces is greater 
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than one half the sum of the plane angles. Does 
the last statement hold for an arbitrary tri­
hedral angle? 

180. Prove that the sum of four dihedral angles 
of a tetrahedron (excluding any two opposite 
angles) is less than 2"" and the sum of all di­
hedral angles of a tetrahedron lies between 2n 
and 3n. 

181. From an arbitrary point of the base of a 
regular pyramid a perpendicular is erected. 
Prove that the sum of the Hne segments from 
the foot of the perpendicular to the intersection 
with the lateral faces or their extensions is con­
stant. 

182. Prove that if Xl' X2, X'l' .r~ are distances 
from an arbitrary point inside a tetrahedron to 
its faces, and hi' h2' h~H h" are the corresponding 
altitudes of the tetrahedron, then 

183. Prove that the plane passing through the 
midpoints of two skew edges of a tetrahedron cuts 
it into two parts of equal volumes. . 

184. Prove that if the base of a pyramid ABCD 
~ /'. 

is a regular triangle ABC, and DAB = DBC = 
/""-. 

DCA, then ABCD is a regular pyramid. 
185. Let a and ai' band bl , C and CI be pairs 

of opposite edges of a tetrahedron, and let a, 
~, and y be the respective angles between them 
(a, ~, and y do not exceed 90°). Prove that one 
of the three numbers aal cos a, bb1 cos~, and 
CCI cos y is the sum- of the other two. 
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186. In a tetrahedron ABCD the edges DA, 
DB, and DC are equal to the corresponding alti­
tudes of the triangle ABC (DA is equal to the 
altitude drawn from the vertex A, and so forth). 
Prove that a sphere passing through three verti­
ces of the tetrahedron intersects the edges ema­
nating from the fourth vertex at three points 
which are the vertices of a regular triangle. 

187. Given a quadrangular pyramid MABCD 
whose base is a convex quadrilateral A BCD . 
A plane cuts the edges MA, MB, MC, and MD 
at pOints K, L, P, and N, respectively. Prove 
that the following relationship is fulfilled: 

IMAI IMel 
SBCD I MK I +SADB IMP! 

S I MD I S I MB I 
= ABC IMNI + ACD IMLI 

188. From an arbitrary point in space perpen­
diculars are dropped on the faces of a given cube. 
The six line segments thus obtained are diagonals 
of six cubes. Prove that six spheres each of which 
touches all the edges of the respective cube have 
a common tangent line. 

189. Gi ven three parallel lines; A, B, and C 
are fixed points on these lines. Let M, N, and L 
he the respective points on the same lines situated 
on one side of the plane ABC. Prove that if: 
(a) the sum' of the lengths of the line segments 
AM, BN, and CL is constant, or (b) the sum of 
the areas of the trapezoids AMNB, BNLC, and 
CLMA is const.ant, then the plane MNL passes 
through a fixed point. 

190. The sum of the lengths of two skew edges 
of a tetrahedron is equal to the sum of the lengths 



42 Problems in Solid Geometry 

of two other skew edges. Prove that the sum of 
the dihedral angles whose edges are the first pair 
of edges is equal to the sum of the dihedral angles 
whose edges are represented by the second pair 
of the edges of the tetrahedron. 

191. Let 0 be the centre of a regular tetrahed­
ron. From an arbitrary point M taken on one 
of the faces of the tetrahedron perpendiculars 
are dropped on its three remaining faces, K, L, 
and N being the feet of these perpendiculars. Prove 
that the line OMpasses through the centre of grav­
ity of the triangle KLN. 

192. In a tetrahedron ABCD, the edge CD 
is perpendicular to the plane ABC, M is the mid­
point of DB, and N is the midpoint of AB~ K 

is a point on CD such that I CK I = ; I CD I. 
Prove that the distance between the lines BK 
and CN is equal to that between the lines AM and 
CN. 

193. Taken in the plane of one of the lateral 
faces of a regular quadrangular pyramid is an 
arbitrary triangle. This triangle is projected on 
the base of the pyramid, and the obtained tri­
angle is again projected on a lateral face adjacent 
to the given one. Prove that the last projecting 
yields a triangle which is similar to the origi­
nally taken. 

194. In a tetrahedron ABCD, an arbitrary 
pOint Al is taken in the face BCD. An arbitrary 
plane is passed through the vertex A. The straight 
lines passing through the vertices B, C. and D 
parallel to the line AA 1 pierce this plane at points 
BI , CI , and D I . Prove that the volume of the tetra­
hedron AIBICID 1 is equal to the volume of the 
tetrahedron ABCD. 
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195. Given a tetrahedron ABCD. In the planes 
determining its faces, points AI' BI , CI , DI are 
taken so that the lines AAI , BBI , CCI , DDI are 
parallel to one another. Find the ratio of the 
volumes of the tetrahedrons ABCD and AIBIC1Dlo 

196. Let D be one of the vertices of a tetrahed­
ron, M its centre of gravity, 0 the centre of the 
circumscribed ball. It is known that the pOints 
D, M and the median points of the faces contain­
ing D lie on the surface of the same sphere. 
Prove that the lines DM and OM are mutually 
perpendicular. 

197. Prove that no solid in space can have even 
number of symmetry axes. 

198. Given a circle and a point A in space. 
Let B be the projection of A on the plane of the 
given circle, D an arbitrary point of the circle. 
Prove that the projections of B on AD lie on the 
same circle. 

199. The base of a pyramid ABCDE is a quad­
rilateral ABCD whose diagonals AC and BD 
are mutually perpendicular and intersect at 
point M. The line segment EM is the altitude 
of the pyramid. Prove that the projections of the 
point M on the lateral faces of the pyramid lie 
in one plane. 

200. Prove that if the straight line passing 
through the centre of gravity of the tetrahedron 
ABCD and the centre of the sphere circumscribed 
about it intersects the edges AB and CD, then 
1 AC 1 = 1 BD I, 1 AD 1 = 1 BC I· 

201. Prove that if the straight line passing 
through the centre of gravity of the tetrahedron 
ABCD and the centre of the sphere inscribed in 
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it intersects the edges AB and CD, then I AC I = 
I BD I, I AD I = I BC I· 

202. Given a cube ABCDAIBICIDI . Passed 
through the vertex A is a plane touching the 
sphere inscribed in the cube. Let M and N be 
the points of intersection of this plane and the 
lines AlB and AID. Prove that the line M N is 
tangent to the ball inscribed in the cube. 

203. Prove that for a tetrahedron in which all 
the plane angles at one of its vertex are right 
angles the following statement holds true: the 
sum of the squared areas of rectangular faces is 
equal to the squared area of the fourth face (Py­
thagorean theorem for a rectangular tetrahedron). 

204. Prove that the sum of the squared projec­
tions of the edges of a cube on an arbitrary plane 
is constant. 

205. Prove that the sum of the squared projec­
tions of the edges of a regular tetrahedron on an 
arbitrary plane is constant. 

206. Two bodies in space move in two straight 
lines with constant and unequ~l velocities. Prove 
that there is a fixed circle in space such that the 
ratio of distances from any point of this circle to 
the bodies is constant and is equal to the ratio 
of their velocities. 

207. Gi ven a ball and two points A and B 
outside it. Two intersecting tangents to the ball 
are drawn from the points A and B. Prove that 
the point of their intersection lies in one of 
the two fixed planes. 

208. Three balls touch the plane of a given 
triangle at its vertices and are tangent to one 
another. Prove that if the triangle is scalene, 
then there exist two balls touching the three 
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given balls and the plane of the triangle, and if 
rand p (p > r) are the radii of these balls and R 
is the radius of the circle circumscribed about 

. 1 1 2 va the trIangle, then - - - = R • r p 
209. Given a tetrahedron ABCD. One ball 

touches the edges AB and CD at points A and C, 
the other at points Band D. Prove that the pro­
jections of A C and BD on the str aight line passing 
through the centres of these balls are equal. 

210. Is there a space pentagon such that a line 
segment joining any two nonadjacent vertices 
intersects the plane of the triangle formed by 
the remaining three vertices at an interior point 
of this triangle? 

211. Prove that a pentagon with equal sides 
and angles is plane. 

212. Given a parallelepiped ABCDAIBIClDl 
whose diagonal ACl is equal to d and its volume 
to V. Prove that from the line segments equal 
to the distances from the vertices AI' B, and D 
to the diagonal ACl it is possible to construct 
a triangle, and that if s is the area of this tri­
angle, then V = 2ds. 

213. Given a tetrahedron ABCD in which A l , 
Bit CI , DI are the median points of the faces BCD, 
CDA, DAB, and ABC. Prove that there is a 
tetrahedron A Jl2C2D2 in which the edges A 2B 2, 
B 2C2, C2D 2 and D2A2 are equal and parallel to 
the line segments AAlt BBl , CClt and DDl , re­
spectively. Find the volume of the tetrahedron 
A 2B 2C2D 2 if the volume of the tetrahedron ABCD 
is equal to V. 

214. Given a tetrahedron. Prove that there 
is another tetrahedron KLMN whose edges KL, 
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LM, MN, and NK are perpendicular to the cor .. 
responding faces of the given tetrahedron, and 
their lengths are numerically equal to the areas 
of these faces. Find the volume of the tetrahedron 
KLMN if the volume of the given tetrahedron is 
equal to V. 

215. Given three intersecting spheres. Three 
chords belonging to diHerent spheres are drawn 
through a point, situated on the chord common 
for all the three spheres. Prove that the end points 
of the three chords lie on one and the same sphere. 

216. A tetrahedron ABeD is cut by a plane 
perpendicular to the radius of the circumscribed 
sphere drawn towards the vertex D. Prove that 
the vertices A, B, C and the points of intersec­
tion of the plane with the edges DA, DB, DC 
lie on one and the same sphere. 

217. Given a sphere, a circle on the sphere, and 
a point P not belonging to the sphere. Prove that 
the other points of intersection of the lines, con­
necting the point P and the points on the given 
circle, form a circle with the surface of the sphere. 

218. Prove that the line of intersection of two 
conical surfaces with parallel axes and equal an­
gles of axial sections is a plane curve. 

219. Taken on the edges AB, BC, CD, and 
DA of the tetrahedron ABCD are points K, L, 
M, and N situated in one and the same plane. 
Let P be an arbitrary point in space. The lines 
PK, PL, PM, and PN intersect once again the 
circles circumscribed about the triangles PAB, 
PBC, PCD, and PDA at the points Q, R, S, and 
T, respectively. Prove that the points P, Q, R, 
S, and T lie on the surface of a sphere. 

220. Prove that the edges of a tetrahedral anflle 
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are elements of a cone whose vertex coincides with 
the vertex of this angle if and only if the sums 
of the opposite dihedral angles of the tetrahedral 
angle are equal to each other. 

221. Given a hexagon all faces of which are 
quadrilaterals. It is known that seven of its 
eight vertices lie on the surface of one sphere. 
Prove that the eighth vertex also lies on the sur­
face of the same sphere. 

222. Taken on each edge of a tetrahedron is an 
arbitrary point different from the vertex of the 
tetrahedron. Prove that four spheres each of which 
passes through one vertex of the tetrahedron and 
three points taken on the edges emanating from 
this vertex intersect at one point. 

Section 3 

Problems on Extrema. Geometric 
Inequalities 

223. Given a dihedral angle. A straight line l 
lies in the plane of one of its faces. Prove that 
the angle between the line l and the plane of the 
other face is maximal when l is perpendicular to 
the edge of this dihedral angle. 

224. In a convex quadrihedral angle, each 
of the plane angles is equal to 60°. Prove that 
the angles between opposite edges ncanot be all 
acu te or all obtuse. 

225. The altitude of a frustum of a pyramid is 
equal to h, and th e area of the midsection is S. 
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What is the range of change of the volume of this 
pyramid? 

226. Find the greatest value of the volume of 
the tetrahedron inscribed in a cylinder the radius 
of whose base is R and the altitude is h. 

227. The base of a rectangular parallelepiped 
ABCDAIBICIDI is a square ABCD. Find the 
greatest possible size of the angle between the 
line BDI and the plane BDC I" 

228. In a regular quadrangular prism 
ABCDAIBICIDI the altitude is one half the side 
of the base. Find the greatest size of the angle 
AIMCl , where M is a point on the edge AB. 

229. The length of the edge of the cube 
ABCDAIBICIDI is equal to 1. On the extension 
of the edge AD, a point M is chosen for the point D 
so that I AM I = 2 -V 275. Point E is the mid­
point of the edge AlBl , and point F is the mid­
point of the edge DDI . What is the greatest value 
that can be attained by the ratio I MP 1/1 PQ I, 
where the point P lies on the line segment AE, 
and the point Q on the line segment CF? 

230. The length of the edge of the cube 
ABCDAIBIC1Dl is equal to a. Points E and F 
are the midpoints of the edges BBI and CC l , 

respectively. The triangles are considered whose 
vertices are the points of intersection of the plane 
parallel to the plane ABCD with the lines ACl , 

CE, and DF. Find the smallest value of the areas 
of the triangles under consideration. 

231. Inscribed in a regular quadrangular pyra­
mid with side of the base and altitude equal to 1 
(each) is a rectangular parallelepiped whose base 
is in the plane of the base of the pyramid, and 
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the vertices of the opposite face lie on the lateral 
surface of the pyramid. The area of the base of the 
parallelepiped is equal to s. What is the range 
of variation of the length of the diagonal of the 
parallelepiped? 

232. The bases of a frustum of a pyramid are 
regular triangles ABC and AIBICI 3 cm and 
2 cm on a side, respectively. The line segment 
joining the vertex CI to the centre 0 of the base 
ABC is perpendicular to the bases; I CIO I = 3. 
A plane i~ passed thrQugh the vertex B and mid­
points of the edges AIBI and BICI . Consider the 
cylinders situated inside the polyhedron 
ABCAIMNCI with bases in the face AIMNCt • 

Find: (a) the greatest value of the volumes of 
such cylinders with a given altitude h; (b) the 
maximal value of the volume among all cylin­
ders under consideration. 

233. All edges of a regular triangular prism 
ABCAIBICI have an equal length a. Consider 
the line segments with end points on the dia­
gonals BCI and CA I of the lateral faces parallel 
to the plane ABBIA I . Find the minimal length 
of such line segments. 

234. Given a trihedral angle and a point inside 
it through which a plane is passed. Prove that the 
volume of the tetrahedron formed by the given 
angle and the plane will be minimal if the given 
point is the centre of gravity of the triangle which 
is the section of the trihedral angle by the plane. 

235. The surface area of a spherical segment is 
equal to S (the spherical part of the segment is 
considered here). Find the greatest volume of 
this segment. 

236. A cube with edge a is placed on a pJane. 



50 Problema in Solid Geometry 

A light source is situated at a distance b (b > a) 
from the plane. Find the smallest area of the 
shadow thrown by the cube onto the plane. 

237. Given a convex central-symmetric poly­
hedron. Consider the sections of this polyhedron 
parallel to the given plane. Check whether the 
following statements are true: 

(1) the greatest area is possessed by the section 
passing through the centre; 

(2) for each section consider the circle of smal­
lest radius containing this section. Is it true that 
to the greatest radius of such a circle there cor­
responds the section passing through the centre 
of the polyhedron? 

238. What is the smallest value which can 
be attained by the ratio of the volumes of the 
cone and cylinder circumscribed about the same 
ball? 

239.1Two cones have a common base and are 
arrange,d on different sides of it. The radius of 
the base is r, the altitude of one cone is h, of the 
other H (h ~ H). Find the maximal distance 
between two elements of these cones. 

240. Given a cube ABCDA1B1C1D1 with edge a. 
Find the radius of the smallest ball which 
touches the straight linesAB., B.C, CD, and DA. 

241. The diagonal of a cube whose edge is equal 
to 1 lies on the edge of a dihedral angle of size 
a (a < 180°). What is the range of variation 
of the volume of the portion of the cube enclosed 
inside this angle? 

242. The lengths of the edges of a rectangular 
parallelepiped are equal to a, b, and c. What is 
the greatest value of the area of an orthogonal 
projection of this parallelepiped on a plane? 
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243. The length of each of five edges of a tetra­
hedron is less than unity. Prove that the volume 
of the tetrahedron is less than 1/8. 

244. The vertex E of the pyramid ABCE is 
found inside the pyramid ABCD. Check whether 
the following statements are true: 

(1) the sum of the lengths of the edges A E, 
BE, and CE is less than that of the edges AD, 
BD, and CD; 

(2) at least one of the edges AE, BE, CE is 
shorter than the corresponding edge AD, BD, 
or CD? 

245. Let rand R be the respective radii of 
the balls inscribed in, and circumscribed about, 
a regular quadrangular pyramid. Prove that 

246. Let Rand r be the respective radii of 
the balls inscribed in, and circumscribed about, 
a tetrahedron. Prove that R ~ 3r. 

247. Two opposite edges of a tetrahedron have 
lengths band c, the length of the remaining edges 
being equal to a. What is the smallest value of 
the sum of distances from an arbitrary point in 
space to the vertices of this tetrahedron? 

248. Given a frustum of a cone in whi ch the 
angle between the generatrix and greater base 
is equal to 60°. Prove that the shortest path over 
the surface of the cone between a point on the 
boundary of one base and the diametrically op­
posite point of the other base has a length of 
2R, where R is the radius of the greater base. 
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249. Let a, b, and c be three arbitrary vectors.. 
Prove that 

lal+lbl+lcl+la+b+cl 
~ I a + b I + I b + c 1 + I c + a I. 

250. Given a cube ABCDAtBtCtDt with edge a. 
Taken on the line AAt is a point M, and on the 
line BC a point N so that the line MN intersects 
the edge CtDt" Find the smallest value of the 
quantity 1 MN I. 

251. The base of a quadrangular pyramid is 
a rectangle one side of which is equal to a, the 
length of each lateral edge of the pyramid is 
equal to b. Find the greatest value of the volume 
of such pyramids. 

252. Given a cube A BCDAtBtCtDt with edge a. 
Find the length of the shortest possible segment 
whose end points are situated on the lines ABt 
and BCt making an angle of 60° with the plane 
of the face ABCD. 

253. Three equal cylindrical surfaces of ra­
dius R with mutually perpendicular axes touch 
one another pairwise. 

(a) What is the radius of the smallest ball 
touching these cylindrical surfaces? 

(b) What is the radius of the greatest cylinder 
touching the three given cylindrical surfaces, 
whose axis passes inside the triangle with vertices 
at the points of tangency of the three given 
cylinders? 

254. Two vertices of a tetrahedron are situated 
on the surface of the sphere of radius Y 10, and 
two other vertices on the surface of the sphere 
of radius 2 which is concentric with the first 



Sec. 3. Problems on Extrema 53 

one. What is the greatest volume of such tetra· 
hedrons? 

255. Two trihedral angles are arranged so that 
the vertex of one of them is equidistant from 
the faces of the other and vice versa; the distance 
between the vertices is equal to a. What is the 
minimal volume of the hexahedron bounded by 
the faces of these angles if all the plane angles 
of one of them are equal to 60° (each), and those 
of the other to 90° (each)? 

256. What is the greatest volume of the tetra­
hedron ABCD all vertices of which lie on the 
surface of a sphere of radius 1, and the edges 
AB, Be, CD, and DA are seen from the centre 
of the sphere at an angle of 60°? 

257. Given a regular tetrahedron with edge a. 
Find the radius of such a ball with centre at the 
centre of the tetrahedron for which the sum of 
the volumes of the part of the tetrahedron found 
outside of the ball and the part of the sphere 
outside of the tetrahedron reaches its smallest 
value. 

258. Prove that among triangular pyramids 
with a given base and equal altitudes the smal­
lest lateral surface is possessed by the one whose 
vertex is projected into the centre of the circle 
inscribed in the base. 
r,... 259. Given a cube with edge a. Let N be 
a point on the diagonal of a lateral face, M 
a point on the circle found in the plane of the 
base having its centre at the centre of the base 
and radius (5/12)""n. Find the least value of the 
quantity I MN I.~ 

260. (a) The base of the pyramid SABC is 
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/"... /"... 
a triangle ABC in which BAC = A, CBA = B. 
the radius of the circle circumscribed about it is 
equal to R. The edge se is perpendicular to the 
plane ABC. Find I SC I if it is known that 
1/sin a + 1/sin ~ - 1/sin 'V = 1, where a, ~, 
and l' are angles made by the edges SA, SB, 
and SC with the planes of the faces SBC, SAC, 
and SAB, respectively. 

(b) Let a, ~, and l' be angles made by the 
edges of a trihedral angle with the planes of 
opposite faces. Prove that 1/sin a + 1/sin ~ -
1/sin l' :;;;, 1. 

261. Can a regular tetrahedron with edge 1 
pass through a circular hole of radius: (a) 0.45; 
(b) 0.44? The thickness of the hole may be neg­
lected. 

Section 4 

Loci of Points 

262. Prove that in an arbitrary trihedral 
angle the bisectors of two plane angles and the 
angle adjacent to the third plane angle lie in 
one plane. 

263. Prove that if the lateral surface of a cy­
linder is cut by an inclined plane, and then it 
is cut along an element and developed on a plane, 
the line of intersection will represent a sinu~ 
soid. ~ 

264. Given on the surface of a cone is a line 
different from an element and such that any 
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two points of this line can be connected with 
an arc belonging to this line and representing 
a line segment on the development. How many 
points of self-intersection has this line if the 
angle of the axial section of the cone is equal 
to a? 

265. Three mutually perpendicular lines pass 
through the point O. A, B, and C are points 
on these lines such that 

,OA 1 = lOB 1 = 10C I. 
Let l be an arbitrary line passing through 0; 
AI' B1, and CI points symmetric to the points 
A, B, and C with respect to l. Through A I, BI , 

and CI three planes are drawn perpendicular 
to the lines OA, OB, and ~C, respectively. 
Find the locus of points of intersection of these 
planes. 

266. Find the locus of the midpoints of line 
segments parallel to a given plane whose end 
points lie on two skew lines. 

267. Given three pairwise skew lines. Find: 
(a) the locus of centres of gravity of triangles 

ABC with vertices on these lines; 
(b) the locus of centres of gravity of triangles 

ABC with vertices on these lines whose planes 
are parallel to a given plane. 

268. Three pairwise skew lin~s lp 121 la are 
perpendicular to one and the same straight line 
and intersect it. Let Nand M be two points 
on the lines l] and l2 such that the line N M 
intersects the line lao Find the locus of midpoints 
of line segments N M. 

269. Given in space are several arbitrary lines 
and a point A. Through A a straight line is 
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dr awn so that the sum of the cosines of the acute 
angles made by this line with the given ones 
is equal to a given number. Find the locus of 
such lines. 

270. Given a triangle ABC and a straight 
line l. AI, BI , and CI are three arbitrary points 
on the line l. Find the locus of centres of gravity 
of triangles with vertices at the midpoints of 
the line segments AAI , BBI , CCI. 

271. Given a straight line l and a point A. 
Through A an arbitrary line is drawn which is 
skew with l. Let M N be a common perpendicular 
to this line and to l (M lies on the line passing 
through A). Find the locus of points M. 

272. Two spheres a and ~ touch a third sphere 
co at points A and B. A point M is taken 
on the sphere a, the line MA pierces the sphere 
co at point N, and the line NB pierces the 
sphere ~ at point K. Find the locus of such 
points M for which the line M K touches the 
sphere ~. 

273. Given a plane and two points on one 
side of it. Find the locus of centres of spheres 
passing througb these points and touching the 
plane. 

274. Find the locus of midpoints of common 
tangents to two given spheres. 

275. Two lines II and l2 touch a sphere. Let M 
and N be points on II and l2 such that the line 
M N also touches the same sphere. Find the 
locus of points of tangency of the line'" 'M N 
with this sphere. . 

276. Given in space are a point 0 and two 
straight lines. Find the locus of points M such 
that the sum of projections of the line segment 
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OM on the given lines is a constant quantity. 
277. Given in space are two straight lines and 

a point A on one of them; passed through the 
given lines are two planes making a right dihed­
ral angle. Find the locus of projections of the 
point A on the edge of this angle. 

278. Given three intersecting planes having 
no common line. Find the locus of points such 
that the sum of distances from these points to 
the given planes is constant. 

279. Given a triangle ABC. On the straight 
line perpendicular to the plane ABC and passing 
through A an arbitrary point D is taken. Find 
the locus of points of intersection of the altitudes 
of triangles DBC. 

280. Given three intersecting planes and 
a straight line I. Drawn through a point M 
in space is a line parallel to I and piercing the 
given planes at points A, B, and C. Find the 
locus of points M such that the sum I AM I + 
I BM I + I CM I is constant. 

281. Given a triangle ABC. Find the locus of 
points M such that the straight line joining the 
centre of gravity of the pyramid ABCM to the 
centre of the sphere circumscribed about it 
intersects the edges A C and BAf. 

282. A trihedral angle is cut by two planes 
parallel to a given plane. Let the first plane cut 
the edges of the trihedral angle at points A, B, 
and C, and the second at points AI' BI , and CI 
(identical letters denote points belonging to one 
and the same edge). Find the locus of points 
of intersection of the planes ABCI , ABIC, and 
AIBC. 

283. Given a plane quadrilateral ABCD. Find 
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the locus of points M such that the lateral surface 
of the pyramid ABCDM can be cut by a plane 
so that the section thus obtained is: (a) a rectan­
gle, (b) a rhombus, (c) a square; (d) in the pre­
ceding case find the locus of cen trefl of squares. 

284. Given a plane triangle ABC. Find the 
loc/us of points M in space such that the straight 
line connecting the centre of the sphere circum­
scribed about ABCM with G as the centre of 
gravity of the tetrahedron ABCM is perpendic­
ular to the plane AMG. 

285. A circle of constant radius displaces 
touching the faces of a trihedral angle all the 
plane angles of which are equal to 90° (each). 
Find the locus of centres of these circles. 

286. A spider sits in one of the vertices of 
a cube whose edge is 1 cm long. I t crawls over 
the surface of the cube with a speed of 1 em/s. 
Find the locus of points on the surface of the 
cube such that can be reached by the spider in 
two seconds. 

287. Given a trihedral angle each of whose 
plane angles is equal to 90°, 0 is the vertex of 
this angle. Consider all possible polygonal lines 
of length a beginning at the point 0 and such 
that any plane parallel to one of the faces of 
the angle cuts this polygonal line not more than 
at one point. Find the locus of end points of 
this polygonal line. 

288. Given a ball with centre O. Let ABCD 
be the pyramid circumscribed about it for which 
the following inequalities are fulfilled: I OA 1 ~ 
lOB I ~ I OC I > I OD I. Find the locus of 
poin ts A, B, C, and D. 

289. Given a triangle ABC. Find the locus of 
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points M in space such that from the line seg­
ments MA, MB, and MC a right triangle can 
he formed. 

290. On the surface of the Earth there are 
points the geographical latitude of which is 
equal to their longitude. Find the locus of the 
projections of all these points on the plane of 
the equator. 

291. Given a right circular cone and a point A 
outside it found at a distance numerically equal 
to the altitude of the cone from the plane of its 
base. Let M be a point on the cone such that 
a beam of light emanating from A towards M, 
being mirror-reflected by the surface of the cone, 
will be parallel to the plane of the base. Find 
the locus of projections of points M on the plane 
of the base of the cone. 

292. Drawn arbitrarily through a fixed point P 
inside a ball are three mutually perpendicular 
rays piercing the surface of the ball at points 
A, B, and C. Prove that the median point of 
the triangle ABC and the projection of the 
point P on the plane ABC describe one and the 
same spherical surface. 

293. Given a trihedral angle with vertex 0 
and a point N. An arbitrary sphere passes 
through 0 and N and intersects the." edges of 
the trihedral angle at points A, B, and C. Find 
the locus of centres of gravity of triangles ABC. 

An Arbitrary Tetrahedron 

294. Given an arbitrary tetrahedron and 
a point N. Prove that six planes each of which 
passes through one edge of the tetrahedron and 
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is parallel to the straight line joining N to 
the midpoint of the opposite edge intersect at 
one point. 

295. Prove that six planes each of which 
passes through the midpoint of one edge of the 
tetrahedron and is perpendicular to the opposite 
edge intersect at one point (Monge's point). 

296. Prove that if Monge's point lies in the 
plane of some face of a tetrahedron, then the 
foot of the altitude dropped on this face is found 
on the circle described about it (see the preced­
ing problem). 

297. Prove that the sum of squared distances 
from an arbitrary point in space to the vertices 
of a tetrahedron is equal to the sum of squared 
distances between the midpoints of opposite 
edges and quadruple square of the distance 
from the point to the centre of gravity of the 
tetrahedron. 

298. Prove that there are at least five and 
at most eight spheres in an arbitrary tetrahedron 
each of which touches the planes of all its faces. 

299. ABCD is a three-dimensional quadrilat­
eral (A, B, C, and D do not lie in one plane). 
Prove that there are at least eight balls touching 
the lines AB, BC, CD, and DA." Prove also 
that if the sum of some two sides of the given 
quadrilateral is equal to the sum of two other 
sides, then there is an infinitude of such balls. 

300. Prove that the product of the lengths 
of two opposite edges of a tetrahedron divided 
by the product of the sines of the dihedral angles 
of the tetrahedron corresponding to these edges 
is constant for a given tetrahedron (theorem of 
sines). 
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301. Let Sh Rh li (i = 1, 2, 3, 4) denote 
respectively the areas of faces, the radii of the 
circles circumscribed about these faces, and the 
distances from the centres of these circles to the 
opposite vertices of a tetrahedron. Prove that 
for the vertices of the tetrahedron the following 
formula is valid: 

4 

~ ~ st (It--Ri). 
i-1 

302. Given an arbitrary tetrahedron. Prove 
that there exists a triangle whose sides are numer­
ically equal to the products of the lengths of 
the opposite sides of" the tetrahedron. Let S 
denote the area of this triangle, V the volume 
of the tetrahedron, R the radius of the sphere 
circumscribed about it. Then the following equal­
ity takes place: S = 6VR (Grelle's formula). 

303. Let a and b denote the lengths of two 
skew edges of a tetrahedron, a and ~ the sizes 
of the corresponding dihedral angles. Prove that 
the expression 

a2 + b2 + 2ab cot a cot ~ 

is independent of the choice of the edges (Bret­
schneider's theorem). 

An Equlfaced Tetrahedron 

304. A tetrahedron is said to be equijaced if all 
of its faces are congruent triangles or, which is 
the same, if opposite edges of the tetrahedron 
are pairwise equal. Prove that for a tetrahedron 
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to be equifaced, it is necessary and sufficient. 
that any of the following conditions he fulfilled: 

(a) the sums of plane angles at any of the three 
vertices of a tetrahedron are equal to 180°; 

(b) the sums of plane angles at some two verti­
ces of a tetrahedron are equal to 180°, and, be. 
sides, some two opposite edges are equal; 

(c) the sum of plane angles at some vertex 
of a tetrahedron is equal to 180°, and, besides, 
the tetrahedron has two pairs of equal opposite 
edges; 

~ 
(d) the following equality is fulfilled ABC = 

/'.... /""'-.. /"... 
ADC = BAD = BCD, where ABCD is a given 
tetrahedron; 

(e) all the faces are equivalent; 
(f) the centres of the inscribed and circum­

scribed spheres coincide; 
(g) the line segments joining the midpoints 

of opposite edges are perpendicular; 
(h) the centre of gravity coincides with the 

centre of the circumscribed sphere; 
(i) the centre of gravity coincides with the 

centre of the inscribed sphere. 
305. Prove that the sum of cosines of the 

dihedral angles of a tetrahedron is positive and 
does not exceed 2, the equality of this sum to 2 is 
characteristic only of equifaced tetrahedrons. 

306. The sum of the plane angles of a trihedral 
angle is equal to 180°. Find the sum of the co­
sines of the dihedral angles of this trihedral angle. 

307. Prove that for an equifaced tetrahedron 
(a) the radius of the inscribed ball is half the 

radius of the ball which touches one face of the 
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tetrahedron and the extensions of three other 
faces (such ball is called externally inscribed); 

(b) the centres of four externally inscribed 
balls are the vertices of a tetrahedron congruent 
to the given one. 

308. Let h denote the altitude of an equifaced 
tetrahedron, hi and h2 the line segments into 
which one of the altitudes of a face is divided 
(by the point of intersection of the altitudes of 
this face). Prove that h2 = 4h1h2• Prove also 
that the foot of the altitude of the tetrahedron 
and the point of intersection of the altitudes of 
the face on which this altitude is dropped are 
symmetric with respect to the centre of the 
circle circumscribed about this face. 

309. Prove that in an equifaced tetrahedron 
the feet of the altitudes, the midpoints of the 
altitudes, and the points of intersection of the 
altitudes of faces lie on the surface of one and 
the same sphere (12-point sphere). 

310. A circle and a point M are given in 
a plane. The point lies within the circle less 
than 1/3 of the radius from its centre. Let ABC 
denote an arbitrary triangle inscribed in a given 
circle with centre of gravity at the point M. 
Prove that there are two fixed points in space 
(D and D') symmetric with respect to the given 
plane such that the tetrahedrons ABCD and 
ABCD' are equifaced. 

311. A square ABCD is given in a plane. 
Two points P and Q are taken on the sides BC 
and CD so that 1 CP 1 + 1 CQ 1 = 1 AB I. Let M 
denote a point in space such that in the tetra­
hedron APQM all the faces are congruent trian-
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gles. Determine the locus of projections of points 
M on the plane perpendicular to the plane of 
the square and passing through the diagonal AG. 

An Orthocentric Tetrahedron 

312. In order for the altitudes of a'tetrahedron 
to intersect at one point (such a tetrahedron is 
called orthocentric) , it is necessary and suffi­
cient that: 

(a) opposite edges of the tetrabedron be mu­
tually perpendicular; 

(b) one altitude of the tetrahedron pass through 
the point of intersection of the altitudes of the 
base; 

(c) the sums of the squares of skew edges be 
equal; 

(d) the line segments connecting the midpoints 
of skew edges be of equal length; 

(e) the products of the cosines of opposite 
dihedral angles be equal; 

(f) the angles between opposite edges be equal. 
313. Prove that in an orthocentric tetrahedron 

the centre of gravity lies at the midpoint of the 
line segment joining the centre of the circum .. 
scribed sphere to the point of intersection of the 
altitudes. 

314. Prove that in an orthocentric tetrahedron 
the following relationship is fulfilled: 

1 OB 12 = 4R2 -- 3l2, 

where 0 denotes the centre of the circumscribed 
sphere, H the point of intersection of the alti­
tudes, R the radius of the circumscribed sphere, 
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l the distance between the midpoints of the 
skew edges of the tetrahedron. 

315. Prove that in an orthocentric tetrahedron 
the plane angles adjacent to one vertex are all 
acute or all obtuse. 

316. Prove that in an orthocentric tetrahedron 
the circles of nine points of each face belong 
to one sphere (24-point sphere). 

317. Prove that in an orthocentric tetrahedron 
the centres of gravity and the points of inter­
section of the altitudes of faces, as well as the 
pOInts dividing the line segments of each alti­
tude of the tetrahedron from the vertex to the 
point of intersection of the altitudes in the ratio 
2 : 1, lie on one and the same sphere (12-point 
sphere). 

318. Let H denote the point of intersection of 
altitudes of an orthocentric tetrahedron, M 
the centre of gravity of some face, and None 
of the pOints of intersection of the line H M 
'vith the sphere circumscribed about the tetra­
hedron (M lies between Hand N). Prove that 
I MN I = 2 I HM I. 

319. Let G denote the centre of gravity of an 
orthocentric tetrahedron, F the foot of a certain 
altitude, K one of the points of intersection of 
the straight line FG with the sphere circumscribed 
about the tetrahedron (G lies between K 
and F). Prove that I KG I = 3 I FG I. 
An ArbitraI'y Polyhedron. The Sphere 

320. Prove that on a sphere it is impossible 
to arrange three arcs of great circles 3000 each 
so that no two have common points. 

321. Prove that the shortest line connecting 
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two points on the surface of a sphere is the 
smaller arc of the great circle passing through 
these points. (Considered here are lines passing 
over the surface of the sphere.) 

322. Given a polyhedron with equal edges 
which touch a sphere. Check to see whether 
there always exists a sphere circumscribed about 
this polyhedron. 

323. Find the area of the triangle formed by 
the surface of a sphere of radius R intersecting 
a trihedral angle whose dihedral angles are 
equal to a, ~, and y, and whose vertex coincides 
with the centre of the sphere. 

324. Let M denote the number of faces, K the 
number of edges, N the number of vertices of 
a convex polyhedron. Prove that 

M - K +N = 2. 

(Euler was the first to obtain this relationship; 
it is true not only for convex polyhedra, but 
also for a broader class of so-called simpZy-con­
nected polyhedra.) 

325. Given on the surface of a sphere is a cir­
cle. Prove that of all spherical n-gons containing 
the given circle inside themselves, a regular 
spherical n-gon has the smallest area. 

326. Prove that in any con vex polyhedron 
there is a face having less than six sides. 

327. Prove that in any con vex polyhedron 
there is either a triangular face or a vertex at 
which three edges meet. 

328. Prove that a convex polyhedron cannot 
ha ve seven edges. Prove also that for any n ~ 6) 
n * 7 there is a polyhedron having n edges. 

329. Prove that in any convex polyhedron 
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there are two faces with equal number of sides. 
330. Found inside a sphere of radius 1 is 

a Convex polyhedron all dihedral angles of which 
are less than 2n/3. Prove that the sum of the 
lengths of the edges of this polyhedron is less 
than 24. 

331. The centre of a sphere of radius R is 
situated outside a dihedral angle of size a at 
a distance a (a < R) from its edge and lies in 
the plane of one of its faces. Find the area of 
the part of a sphere enclosed inside the angle. 

332. A ball of radius R touches the edges of 
a tetrahedral angle each of whose plane angles 
is equal to 60°. The surface of the ball inside 
the angle consists of two curvilinear quadrilat­
erals. Find the areas of these quadrilaterals. 

333. Given a cube with edge a. Determine the 
areas of the parts of the sphere circumscribed 
about this cube into which it is separated by 
the planes of the faces of the cube. 

334. Given a convex polyhedron. Some of its 
faces are painted black, no two painted faces 
having a common edge, and their number being 
more than half the number of all the faces of 
the polyhedron. Prove that it is impossible to 
inscribe a ball in this polyhedron. 

335. What is the greatest number of balls 
with a radius of 7 that can simultaneously touch 
a ball with a radius of 3 without intersecting 
one another. 

An Outlet into Space 

336. Taken on the sides BC and CD of the 
square ABCD are points M and N so that 
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1 CM I + 1 CN 1 = 1 AB I· The lines AM and 
AN divide the diagonal BD into three segments. 
Prove that a triangle can always be formed from 
these segments, one angle of this triangle being 
equal to 60°. 

337. Given in a plane are a triangle ABC and 
a point P. A straight line 1 intersects the lines 
AB, BC, and CA at points CI , A l , and B l , 
respectively. The lines PCI' PAl' and PBl 
intersect the circles circumscribed respectively 
about the triangles PAB, PBC, and PAC at 
the respective points C2, A 2, and B 2, different 
from the point P. Prove that the points P, A 2, 

B 2, C 2 lie on one and the same circle. 
338. Prove that the diagonals, connecting 

opposite vertices of the hexagon circumscribed 
about a circle, intersect at one point (Brianchon's 
theorem). 

339. Two triangles AlBlCl and A~2C2 are 
arranged in a plane so that the lines AIA2' B 1B 2, 
and Cl C2 intersect at one point. Prove that the 
three points of intersection of the following 
three pairs of lines: AlBl and A 2B 2t BlCl and 
B 2C2 , ClA l and C2A2 are collinear (that is, in 
one straight line) (Desargues' theorem). 

340. Three planes in space intersect along one 
straight line. Three trihedral angles are arranged 
so that their vertices lie on this line, and the 
edges in the given planes (it is supposed that the 
corresponding edges, that is, the edges lying 
in one plane, do not intersect at one point). 
Prove that the three points of intersection of 
the corresponding faces of these angles are col­
linear. 
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Section 1 

a3 -V6 4hs 5+ -V5 3 
1.. 108 2. 45' 3. 24 a. 4. 4a2• 

5 ± 2 -Va ab be ca 
5. n - 2 arccos 13 . 6. 2e' 2a' 2b. 

7. a vi ,(}I ~ 
8. The st~ent of the problem is obvious for a tri­

angle whose one side lies on the line of intersection of the 
planes ct and ~. Then it is possible to prove its validity 
for an arbitrary triangle, and then also for an arbitrary 
polygon. 

9. Take the triangles ABICI and AB2C2 for the bases 
of the pyramids ABICIDI and AB2C2D 2 • 

10. The angles under consideration are equal to the 
angles formed by the diagonal of some rectangular parallel­
epiped with three edges emanating from its end point. 

12. Consider the parallelepiped formed by the planes 
passing through the edges of the tetrahedron parallel to 
opposite edges. (This method of completing a tetrahedron 
to get a parallelepiped will be frequently used in further 
constructions.) The volume of the tetrahedron is equal 
to one third the volume of the parallelepiped (the planes 
of the faces of the tetrahedron cut off the parallelepiped 
four triangular pyramids, the volume of each of them 
being equal to one sixth the volume of the parallelepiped), 
and the volume of the parallelepiped is readily expressed 
in terms of the given quantities, sincr the diagonals of its 
faces are equal and parallel (or, simply, coincide) to the 
corresponding edgrs of thr tetrahedron, and tho altitude 
of the parallolepiped is equal to the distanrc hctwoen tho 
corresponding edges of the tetrahedron. 

13. It is easy to see that each of these relationships 
(between the areas of the faces and the line segments of 



70 Problems in Solid Geometry 

the edge) is equal to the ratio of the volumes of two tetra­
hedrons into which the given tetrahedron is separated by 
the bisecting plane. 

14. 10ining the centres of the sphere to the vertices 
of the polyhedron, divide it into pyramids whose bases are 
the faces of the polyhedron, and whose altitudes are equal 
to the radius of the sphere. 

15. It is easy to verify the validity of the given for­
mula for a tetrahedron. Here, two cases must be consid­
ered: (1) three vertices of the tetrahedron lie moneplane 
and one vertex in the other; (2) two vertices of the tetra­
hedron lie in one plane and two in the other. In the second 
case, use the formula for the volume of a tetrahedron from 
Problem 12. ~ 

Then note that an arbitrary convex polyhedron can be 
broken into tetrahedrons whose vertices coincide with 
those of the polyhedron. This statement is sufficiently 
obvious, although its proof is rather awkward. Moreover, 
the suggested formula is also true for nonconvex polyhedra 
of the,indicated type, as well as for solids enclosed between 
two parallel flanes for which the area of the section 
by a plane para leI to these planes is a quadratic function 
of the distance to one of them. This formula is named 
Simpson's formula. 

16. Since the described frustum of a cone may be consid­
ered as the limit of frustums of pyramids circumscribed 
about the same sphere, for the volume of a frustum of a 
cone the formula from Problem 14 holds true. 

17. First prove the following auxiliary statement. 
Let the line segment AB rotate about the line l (l does not 
intersect AB). The perpendicular erected to AB at the 
midpoint of AB (point C) intersects the line l at point 0; 
MN is the projection of AB on the line l. Then the area of 
the surface generated by revolving AB about l is equal to 
2n I CO 1 • I M N I. 

The surface generated by revolving AB represents the 
lateral surface of the frustum of a cone with radii of the 
bases BN and AM, altitude I MN I, andgeneratrixAB. 
Through A draw a straight line parallel to l, and denote 
by L the point of its intersection with the perpendicular 
BN dropped from B on l, I MN I = I AL I. Denote the 
projection of C on l by K. Note that the triangles ABL 
and COK are similar to each other. This taken into 
consideration, the lateral surface of the frustum of a cone 
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Is equal to 

2n IBN 1 + 1 AM I .1 AB I =2n I CK 1.1 AB I 
2 

= 2n I CO I ·1 AL I = 2n I CO 1 ·1 M N I· 
Now, with the aid of the limit passage, it is easy to get the 
statement of our problem. (If the spherical zone under 

'-" 
consideration is obtained by revolving a certain arc AB 
of a circle about its diameter, then the surface area of 
this zone is equal to the limit of the area of the surface 
generated by rotating about the same diameter the polygo­
nalline A L 1L2 • • • LnB all vertices of which lie on AB pro­
vided that the length of the longest link tends to zero.) 

18. Let AB be the chord of the given segment, and 0 
the centre of the circle. Denote by x the distance from 0 
to AB, and by R the radius of the circle. Then the volume 
of the solid generated by rotating the sector AOB about 
the diameter will be equal to the product of the area of 

'-' 
the surface obtained by revolving the arc AB (see Problem 
17) by R13, that is, this volume is equal to 

.!. 2nR1h=! n (x1 + a2 
) h=~ na1h+! nx2h 

3 3 4 6 3· 

But the second term is equal to the volume of the solid 
generated by revolving the triangle AOC about the dia­
meter (see the solution of Problem 17). Hence, the first term 
is just the volume of the solid obtained by revolving 
the given segment. 

19. place equal loads at the vertices of the pyramid; 
to find the centre of gravity of the system, you may proceed 
as follows: first find the centre of gravity of three loads 
and then, placing a triple load at the found point, find 
the centre of gravity of the entire system. You may also 
proceed in a different way: first find the centre of grav­
ity of two loads, then of two others and, finally, the 
centre of gravity of the whole system. You may not resort 
to a Q\eehanicaI interpretation, but, simply, consider the 
triangle formed by two vertices of the tetrahedron and 
the midpoint of the opposite edge. 

21.. Through each edge of the tetrahedron pass a plane 
parallel to the opposite edge (see the solution of Prob-
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lem 12). These planes form a parallelepiped whose edges 
are equal to the distances between the midpoints of the 
skew edges of the tetrahedron, and the ed~s of the tetra­
hedron themselves are the dia¥Onals of Its faces. Then 
take advantage of the fact that In an arbitrary parallelo­
gram the sum of the squared lengths of the diagonals is 
equal to the sum of the squared lengths of its sides. 

22. If M is the midpoint of BBH then AIM is _parallel 
to CK. Consequently, the desired angle is equal to the 
angle MAID. On the other hand, the plane AIDM is paral­
lel to CK, hence, the distance between CK and.-4 I D is 
equal to the distance from the point K to the ~lane AID M. 
Denote the desired distance by x, and the dihedral angle 
by cpo Then we have 

t 1 a8 
V A1MDK = '"3 S A1M.oX="3 S A1KDa == t2 • 

a8 
Hence x=-=48-=----. Find the sides of ~ AIMD: 

A1MD 

,r- aYS 1 AID I = a ,,2, 1 AIM 1 = 2 ' 
3 1 DM 1=2 a. 

By the theorem of cosines, ". find cos'l'= l/ ; thu~ 
to 

S 3 2 a 
A1MD = 4' a, x = 3" • 

t a 
Answer: arccos -y to ' 3". 

23. This problem can be solved by the method applied 
in Problem 22. Here, we suggest another method for deter­
mining the distance between skew medians. Let ABCD be 
the given tetrahedron, K the midpoint of AB, M the 
midpoint of A C. Project the tetrahedron on the plane 
passing through AB perpendicular to CK. The tetrahedron 
is projected into a triangle ABD1, where D] is the projec­
tion of D. If MI is the projection of M (MI is the midpoint 
of AK), then the distance between the lines CK and DM 
is equal to the distance from the point K to the line D1M1• 

The distance is readily found, since DIKMI is a right 
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triangle in which the legs DIK and KMI are respectively 
equal to a 11'273 (altitude of the tetrahedron) and a/4. 

The problem has two solutions. To get the second solu­
tion, consider the medians C K and BN, where N is the mid-
point of DC. j, 

1 "II /2 2 V10 
Answer: arccos "6' a V 35 and arccos "3 , a 10 • 

24. It follows from the hypothesis that the quadrilat­
eral ABeD is not convex. 

va 
Answer: -3-. 

25 (2b ± a) a 26 4131; V41 27 1/ 7 
• 2 V 3h2 _ a2 ' • 384 • • a 8 • 

"II / • a2 

28. a+ b ± V 2ab - T · 

a V22 
30. 2+ Va. 31. 8 

32 th y-_). 33.2 arccos (Sin ct sin ~) . 
• 3a+h 3+2 3 n 

34. 12V. 35. 6R2-2a2. 36. ~ . 37. arctan (2-V3). 

1 
38. I r 0 < ct < arccos "4 ' 

l = R V 27 +3 tan2 ~ [ arctan (3 cot ~) - ct ] ; 

if ct;;;; arccos ! ' l = O. 

39. 25: 20: 9. 40. arccrs (2- V5). 41. ~2 • 

42. Denote the side of the base and the altitude of the 
~rism by a, I KB I = x. It follows from the hypothesis 
that the projection of K M on the plane of the base is paral-
1el to the bisector of the angle C of the triangle ABC, that 
is, I BIM I = 2x, I MCI I = a - 2x. Let Ll be the pro-
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jection of L on A C. It is also possible to obtain from the 

hypothesis that LLI = I ALII Y 3 , I LIC I = a - 2x. 
2 

Conse~ently, the quantity I A Ll I can take on the follow­
ing values: (1) I ALII = a - I MCII = a - (a -
2%) = 2.%; (2) I ALl I = a + (a - 2.%) = 2 (a - x). In 
the first case I KL II = I KL 1 II + ILLI II = aD + 
10x2 -4ax; in the second I KL II = 6 (a - X)2. 

In both cases I KM 12 = 3zI + a2 • 

Solving two systems of equations, we get two respec­
tive values for a: 

7 y6+yi4 
a l = Y97 ' az=. 8 

All$wer: 7 y6+ y« 
Y97' 8 

43. arctan vI . 
44. Extend the lateral faces until they intersect. 

In doing so, we obtain two similar pyramids whose bases 
are the bases of the given frustum of a pyramid. Let a he 
the side of the greater base of the frustum, and a the dihed­
ral angle at this base. We can find: the altitude of the 

greater pyramid h = a ~ 3 tan a, the radi us of the inscribed 

ball r = a ~3 tan ~, the altitude of the smaller pyra-

mid hI = h - 2r = a ~3 (tan a - 2 tan ~ ), the side 

h tan a - 2 tan ~ 
of the smaller base a l = -oahl = a 2, the 

tan a 

lateral ellge of the greater pyramid l = aY3 y tan2a +4, 
6 

the lateral edge of the smaller pyramid II = l h~; then 

take advantage of the condition of existence of a ball 
touching all the edges of a frustum of a pyramid. This 
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condition is equivalent to tho existence of a circle inscribed 
in a lateral face, that is, the following equality must 
be fulfilled: 

2 (l - ll) = a + ap 

Expressing l, ll' al' in terms of a and a, we get the equa­
tion 

ya -., tan2 a+4.tan ..::..= tan a - tan"::" 
3 r 2 2 • 

a -.,- -.,­Hence we find tan 2= r 3- r 2. 

Answer: 2 arctan (V3-V2). 
-f+Y5 f+Y5 

45. 2 < a < 2 ' a =1= 1; 

f 
V= 12 y(a2+f) (3a2 -1-a4). 

46 3-cos a-cos ~-cos 'V 
• 3+cos a+cos ~+cos 'V. 

n 3a2 y3 . n 
47. If 0 < a < -6 ' then S = 2 ; If -6 ~ a < cos a 

2 a2 ( -
arctan -"-3' then S= 6 18cota-3Y3-r cos a 

2 y3cot2 a); if arctan ::-3 ~ a < ~, then S = 

v_a' (V3+cot a). 
3 sin a 

( a2b2 + b2c2 - c2a2 ) 
48. arccos a2b2+b2c2+c2a2 • 
49. The polyhedron ABMDCN is a triangular prism 

with base ABM and lateral edges AD, BC, MN. 
b 

Answer: 2a y 4a2 - b2 • 

Y4c2-a2b2 
50. R= V . 

2 4c2-a2-b2 



76 Problems in Solid Geometry 

5t. ~ Y3ml+3nl+3pl-a2-b2-c2. 

52. On the extension of the edge CCI take a point K 
so that B)K is parallel to BCI , and through the edge BBI 
pass a plane parallel to the given (Fig. 1). This plane 

A 

Fig. 1 

must pass either through the internal or external bisector 
of the angle DB1K. Since the ratio in which the plane 
passing through BBI divides D Kl is equal to the ratio in 
which it divides DC, two cases are possible: (1) the plane 
passes through a point N on the edge D G such that 
I DN 1/1 NC I = V 3tV 2, or (2) it passes through a point 
M on its extension, and once again I DM 1/1 AIG I = 
Y3/Y'2. Find the distance from the point K to the nrst 
plane. It is equal to the distance from the point G to the 
line BN. If this distance is x, then 

2S B NC a Y2 x- -
- IBN! -- (V3+ V2)V 11-4 y-B 

a (V'-6-t) V-2 
5 
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and 
x 

sin q> = -I-B-I-K-I 
V6-t 

5 ' 
where q> is the angle between the plane BBIN and lines 
BID and BIK. The other angle is found exactly in the 
same manner • 

. y6±t 
Answer: arCSln 5 . 

53. Let ABeD be the given pyramid whose lateral 
edges are: I DAI = a, I DB I = x, I DC I = Yi by the 
hypothesis, these edges are mutually perpendicular, and 
x + Y = a. It is easy to find that 

t ~r t 
SABC=2" r a2(x2+y2)+x2y2, VABCD="6axy. 

On the other hand, if R is the radius of the required ball, 
then 

R 
V ABCD=""3 (SDAB+SDBO+SDCA -SABC) 

R =6 [ax+ay+xy-ya2 (X2+y2)+X2y2] 

R R =6 (a2+xy-Ya4-2xya2+x2y2)=T:&Y. 

Equating the two expressions for V ABCD, we find R = ~ • 

lL 54. It follows from the hypothesis that the vertex S 
is projected either into the centre of the circle inscribed 
in the triangle ABC or into the centre of the circle exter­
nally inscribed in it. (Anlexternally inscribed circle 
touches one side of the triangle and the extensions of two 
other sides of the triangle.) 

2 

Answer: if V3 < b ~ a, then V = :2 y 3b2 - a2; if 

a < b ~ a V 3, two answers are possible: 

a2 .. 13b2 2 V a2 Va .. lb2 I 
VI = 12 r - a , 2 = 12 r - a ; 
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if b> a va, three answers are possible: 

a2 a'l va 
VI = 12 V3b'l-a'l, V'I= 12 Vbl-al , 

V.= a21r3}rbl-3aI. 

/'.... /'.... ~ /'.... 
55. Let the angles SAB, SCA, SAC, SBA be equal to 

a - 2<p, a - <p, a, a + <p, respectively. By the theorem 
of sines, from the triangle SAB we find 

1 SA 1 = 1 AB 1 ~in (a+ <p) 
sm (2a-<p) , 

and from the triangle SA C we find: 

1 SA 1=1 CA I s.in (a-<p) 
sm (2a-<p). 

But, by the hypothesis, 1 AB 1 = 1 AC I. Hence, sin (a + 
<p) = sin (a - <p), whence a = n/2. The condition 
relating the areas of the triangles SAB, ABC, and SAC 
leads to the equation cot2 <p cos 2<p = 1, whence <p = 

farccos (Y2-1). 

Answer: ~-arccos (V2-1), ~ - ~ arccos(V2-1), 

n n 1 ( ... r-) "2' 2+ 2" arccos JI 2-1 • 

56. Let I SA I = l, l is readily expressed in terms of a, 
a, and ~. If l~ a, then b. ASC = b. ASB. (Construct 
the triangle ASC: take an angle of size a with vertex S, 
layoff on one side 1 SA 1 = l, construct a circle of ra­
dius a centred at A; since a ~ l, this circle will intersect 
the second side of the angle at one point.) And if l > a, 
two cases are then possible: b. ASC = b. ASB and 
/'.... 
A C S = a + ~. The line segment l will be less than, 
equal to, or greater than a according as 2a + ~ is greater 
than, equal to, or less than n. 
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Besides, in both cases the plane angles adjacent to the 
vertex A must satisfy the conditions under which a tri­
hedral angle is possible. 

n 
Answer. If ~ > 6" ' 2a+~ > n, then 

V = aSsin(a+~) .. 1"1-2 2~' 
12 . f cos, sma 

if ~~ : ,a<f, a+~>T' then 

V __ as ~~n ~a+~) -V3 sin2 ~-[2 cos (2a+~)+cos ~]2; 
SIn a 

. n n n 2n 
If ~>6' a<3"' 3<a+~<3' then both 
answers are possible. 

57. :' as measured from the point K. 

58. Take Cl so that ABCCI is a rectangle (Fig. 2). Dt, is 
the midpoint of A C 1; Ou O2 are the centres of the circles 

A 
Fig. 2 

c 

circumscribed about the triangles ACID and ABC, 
respectively; 0 is the centre of the sphere circumscribed 
about ABCD. Obviously, O. is the midpoint of AC, AB 
and CIC are respectively perpendicular to AD and A Cu 
consequently, the planes ADCl and ABCCI are mutually 
perpendicular, and OlDIO,.o is a rectangle. Thus I DCl 1== 



80 Problems in Solid Geometry 

YI DC II - I CIC 12 = -rb2 - a2, the radius of the ci~ 
cle circumscribed about the triangle DClA is 

R _ I DCl I Yb2 - a:.s-
1 - /\ - 2 sin a • 

2 sin DACI 

The radius of the sphere R = I OA I can be found from 
the triangle A 0 10 (this triangle is not shown in the figure): 

R== Y I AOI 12+ I 0 10 P'= 21 -. / b~~a2 + a2 V Sln a 
1 = Vb2 -a2 cos2 a 

2 sin a • 
59. Let K be the midpoint of the edge A B of the cube 

ABCDAlBlClDl , M the mid~oint of the edge DICit K and 
M are simUltaneously the mldpoints of the edges PQ and 
RS of a regular tetrahedron PQRS. DlCI lies on RS. If 
the edge of the tetrahedron is equal to b, then I M K I = 
bY 2/2 = aY 2. Hence, b = 21.1. 

Project the tetrahedron on the plane ABCD (Fig. 3): PI' 
Ql' RIt Sl are the respective projections of P, Q, R, S 

Fig. 3 

Since PQ makes an angle of 45° with this plane, the 
length of PlQ! will be aV 2. • 

Let L be the point of intersection of the lines A Band 
PlRl• From the similarity of the triangles PILK and 
PlR1Ml we find 
ILK 1= I RIM. I-I PIK I 

I PlMl I 
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Hence, the edge PR of the tetrahedron (and, consequently, 
other edges: PS, OR, and QS) pierces the cube. 

To compute the volume of the obtained solid, it is con­
venient to consider the solid as a tetrahedron with cor­
ners cut away. 

a3 V2 ~ 
Answer: 12 (16 V2-17). 

60. Denote the lengths of these skew edges by a and b, 
the distance between them by d, and the angle by cp. 
Using the formula from Problem 15, find the volumes of 
the obtained parts: 

V 10 d' V 7 d' 
1= 81 ab sln cp, 2 = 162 ab sin cp. 

20 
Answer: T' 
61. The area of the projection of the second section on 

the first plane is half the area of the first section. On the 
other hand (see Problem 8), the ratio of the area of the 
projection of the second section to the area of the section 
itself is equal to cos a. 

Answer: 2 cos a. 

62. 112 nR2H. 

63. If x, y, and z are the respective distances from the 
centre of the ball to the passed planes, then x2 + y2 + 
Z2 = d2 , and the sum of the areas of the three circles will 
be equal to 

n [(R2 - x2) + (R2 - y2) + (R2 - Z2)] = n (3R2 - tJ2). 

64. Let I A C I = x, I BD I = y (A C and BD touch 
the ball). DI is the projection of D on the plane passing 
through A C parallel to BD. We have 

2R I CD I=x+y= ,I CD1 1=2Rtancp. 
cos cp 

In the triangle CADI the angle CADI is equal either 
to a or 1800 -a. According to this, x and y must satisfy 

6-0449 
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one of the two systems of equations: 

{ z+y= c:~cp , 
x2+y'!-2xy cos a= 4R'! tanS cp, 

(1) 

or 

(2) 

2R R2 
For system (1) we get: x+y= , xy= ---

cos cp cos'! ~ 
2 

2R R" 
for system (2): x+y= , xy= ---. Taking into 

cos cp • '! a 
sm 2" 

account the inequality (x+ y)2 ~ luy, we get that system 

(1) has a solution for cp > T ' and system (2) for q> > 
~ - ~ . Since the volume of the tetrahedron ABeD is 

equal to ~ zy R sin a, we get the answer: if f < q> < 

~ - ~ , the volume of the tetrahedron is equal to 

2 a. 3t a 3t 
3" R3 tan '""2; If ""2-""2 ~ cp < 2' two values of the 

. 2 a 2 a 
volume are posSIble: 3" R3 tan 2 and 3" R3 cot T . 

85. Let the common perpendicular to the given edges 
be divided by the cube into the line segments y, z, and 
z, y + z + z = c (z is the edge of the cube, y is adjacent 
to the edge a). The faces of the cube parallel to the given 
edges cut the tetrahedron in two rectangles, the sides of 

z + z yb the first one are equal to a, -, of the second to c c 

Z a, x + y b, the smaller sides of these rectangles being 
c c 
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oqual to the edge of the cube, that is,.JL b= x, ~ a = x, 
c c 

whence 

~ ~ ~c 
Y=T' x=a and X= ab+bc+ca . 

66. Let 0 1 and O2 be projections of the centre of the 
ball 0 on the planes KLM and KLN, P the midpoint 
of ML. 

The projections 0 1 and O2 on KL must coincide. It is 
possible to prove that these projections get into the mid-

M 

--~----~--~--L R 

Fig. 4 

point of KL, point Q (Fig. 4). Since the dihedral angle 
between the planes KLM and KLN is equal to 900 , the 
radius of the desired sphere will be 

-V I POI 12+ I 01Q 12. 
If 01P is extended to intersect the line KL at point R, 

then from the right triangle P LR, we find I R L I = 6a, 
I RP I = 3a-V 3. We then find 

IRQ 1= ffa, 
2 

I 0 Q I - ffa -Va I RO I _ ffa -Va 
1 - 6' 1- 3 ' 

I POI I = ffa va 
3 

aaY3= 2ara. 
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Consequently, tho radius of the sphere is equal to 

.. / 4a2 _I 121a2 __ ~ • / 137 
V 3 r 12 -- 2 Y 3· 

67. Using the equality of tangent lines emanating 
from one point, prove that the base is a right triangle, 
and the medians of the lateral faces drawn to the sides of 
the base are equal. This will imply that the pyramid is 
regular. 

R3 -y6 
Answer: 4 • 

68. The three given angles cannot be adjacent to one 
face; further, they cannot adjoin to one vertex, since in 
this case all the line segments joining the midpoints of 
opposite edges will be equal. It remains only the case 
when three edges corresponding to right angles form an 
open polygonal line. Let AB, B C, and CD be the mentioned 
edges. Denote: I AB I = x, I BC I = y, I CDI = z. 
Then the distance between the midpoints of AB and CD 

.. ;-x2 Z2 
will be V "4 +y21+:r' and between AC and BD (or AD 

and BC): ~ V xl + Z2. The edge AD will be the greatest: 

I A D I = V x2 + y2 + Z2 = V b2 + 3a2• 

4V3-3 
69. n 13 . 

70. First prove that ABCD is a rectangle and the plane 
DEC is perpendicular to the plane ABCD. To this end, 
through E pass a section perpendicular to B C. This sec­
tion must intersect the base a10ng a straight line passing 
through M and intersecting the line segments BC and AD 
(~ossibly, at their end points). Further, drawing a section 
which is an isosceles trapezoid through B is only possible 
if the section contains the edge AB, and I DE I = I EC I, 
1 A E 1 = 1 EB I. Consequently, 

~ 1 AC 1 > 1 ED 1 = 1 EC 1, {I AC I > I E B 1 = I AE I , 
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i.e. I AC 12> I CE 12 + I AE 12 and ~AEC is not an 
~ 

acute-angled triangle. But AEC cannot be obtuse, since 
~ 

in that case DEC would also be obtuse. 
5 5 

Thus, I AC 1 = 4" 1 AE I ="'3 I EC I· 

3 .. /65 
Answer: "8 V 14' 

71. Through C draw a straight line parallel to AB and 
take on it a point E such that I CE I = I AB I, ABEC is 
a parallelogram. If 0 is the centre of the sphere, then 

/'.... 
the triangle OC E is regular, since OC E = n/3 and 
1 CE 1 = 1 (it follows from the hypothesis). Hence, the 
point 0 is equidistant from all the vertices of the parallel­
ogram ABEC. Hence, it follows that ABEC is a rectan­
gle, the projection of 0 on the plane ABEC is represented 
by the point K which is the centre of ABEC, and I BD I = 

2 I OK I = 2 VI OC 12 - ~ I BC 12 = 1. 

72. If x is the area of the sought-for section, I AB I = 
a, then, taking advantage of the formula of Problem 11 for 
the volume of the pyramid ABCD and its parts, we get 

. a . a 
2 pxsIDT 2 qXSIDT 

"3 a +"3 a 
2 pq sin a 
3 a 

whence 

2 a 
pqcosT 

X= 
p+q 

73 8S2 sin a sin ~ 
• 3a sin (a+~) . 

74. When cutting the ball by the plane AM N, we get 
a circle inscribed in the triangle AM N. In this triangle 

V3 V3 a AN 1 = a-, 1 AM I = a~, I ,MNI=- (found from 
232 
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the triangle C M N). Consequently, if L is the point of 
contact of the desired ball and AM, then 

I AL 1= I AN I + I A~ I-I MN I = (152 V3-+) a. 

The ball inscribed in ABCD has the radius r= ! V ~ a 

and touches the plane A CD at point M. 
Thus, if x is the radius of the desired ball, then 

x I AL I 5-V3 r = I AM I =-:; 4 

5 Y6-3 V2 
Hence, x= 48 4. 

9V3 
75. 8 

;-76. 1 3. 
77. a V2. 

1 
78. arctan ... r - . 

2 r 3 
79. Notation: 0 is the centre of the sphere; 01, O2 , 0 3 

the centres of the given circles, O. the centre of the sought­
for circle. Obviuosly, the triangle 0}0203 is regular. 
Find its sides (M is the point of contact of the circles 
with centres 01 and O2). 101M 1 = 102M 1 = 1, 10M 1= 

/'- /"--... -
2. Hence, M001 = M00 2 = 30°, 1 001 1 = 1002 1 = V 3, 
1 010 2 I = va. 004 is perpendicular to the plane 0 10 20 3 
and passes through the centre of the triangle 0 10 20 3, 
the distances from 01, O2, and 0 3 to 004 are equal to 1-
Let K be the puint of contact of the circles 0 1 and 0 4 , 

L the foot of the perpendicular dropped from 01 on 004 • 

KN is perpendicular to L01, lOlL 1 = 1 01 K 1 = 1, 
1 001 I = va. From the similarity of the right triangles 

/2 
01KN and 001L find lOIN I = V 3' Thus, the required 

. /2 
radiUS 1 04K 1 = 1 LN 1 = 1 -1 3' 
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80. (a) Since the opposite edges in a regular tetrahed­
ron are perpendicular, the lines CIE and BIF must also 
be perpendicular (Fig. 5). 

If K is the midpoint of CI C, then, since the lines BIK 
and BIAI are perpendicular to the line CIE, the line 

Fig. 5 

BIF must lie in the plane passing through BIK and BIAI' 
hence it follows that AIF is parallel to BIK, and, therefore 
I D F I = a (this is the answer to this item). 

(b) The distance between the midpoints of M Nand PQ 
is equal to the distance between the lines BIF and ClEo 
It can be found by equating different expressions for the 
volume of the tetrahedron FBI CIE: 

1 1 
3" S B 1C1E2a = 6" I FBI 1'1 CIE I·x. 

4a 
Hence, X= 3 -y5 • 

a (2--Y2) 
81. (a) a; (b) 2 . 

82. Let I AB I = a, then I ABI I = I ACI I = 2.6a. 
On the lines AB and A C, take points K and L such that 
I AK I = I AL I = I ABI I = I AC 1= 2.6a. An iso­
sceles trapezoid KLCIBI is inscribea in the circle of the 
base of the cone. All the sides of this trapezoid are readily 
computed and, hence, the radius of the circle circums-

cribed about it is also easily found, it equals ~~-Y7 a. 

It is now possible to find the volume of the cone and 
prism. 
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15,379n 
Answer: -....;.....-----,,--

4800 V3 · 
83. Note that the line segment MN is bisected by its 

point of intersection with the line PQ. Project this line 
segment on the plane ABCD. If Nl is the projection of N, 
Kl the midpoint of AD, Ql the midpoint of DC (Kl and Q1 
are the respective projections of K and Q), then NIM is 
perpendicular to A Q1 and is bisected by the point of in-

./'.... /'... 
tersection. Thus, NIAD = 2Q1AD. Hence we find 
1 NIKI 1 and then I NIM I • 

. a ;-
Answer. a l 14. 

84. Through the edge AAI pass a plane perpendicular 
to the plane BCC1B 1 (Fig. 6). M and N are the points of 

s 

s 

Fig. 6 Fig. 7 

intersection of this plane with C1B)..and CB. Take on MN 
a point K such that 1 N K 1 = 1 MN I. By the hypothesis, 
AA).MN is a square, hence, AK is perpendicular to AM, 
and it follows that A K is perpendicUlar to the plane 
AC1B 1, that is, AK is a straight line along which the 
r, lanes passing through the vertex A intersect. Analogous­
y, determine the point L for the vertex A 1• The straight 
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lines A K and AlL intersect at the point 8. Thus, our 
polyhedron represents a quadrangular pyramid 8KPLQ 
with vertex 8 whose base is found in the plane BBlCIC. 
Further, BIN is the projection of ABI. Hence it follows 
that the plane jlassing through A perpendicular to ABI 
intersects the plane BBICIC along a straight line perpen­
dicular to BIN. It follows from the hypothesis that the 
triangle BINCl is regular. Hence, the quadrilateral 
P LQ K, which is the base of the pyramid 8 P LQ K, is a rhom­
bus formed from two regular triangles with side I KL 1= 
3a. 

9as V3 
Answer: 4 • 

85. The sought-for angle makes the angle between the 
element OA and the axis of the second cone equal to n/2. 
Denote by P and Q the centres of the bases of the given 
cones, by 8 the point at which the planes of the bases of 
the cones intersect the perpendicular erected to the plane 
OAB at the point 0 (Fig. 7). In the pyramid 80AB: 
lOA I = lOB I, 80 is perpendicular to the plane OAB, 
o P and OQ are respectively perpendicular to 8B and 8 A, 
.~ ~ ~ /"--... 
POB = QOA = <p, POQ = ~. Find POA. Let I OA I -
lOB I = l, I AB I = a. Then 

lOP I = I OQ I = l cos <p, 
l I 8A I = I 8B 1=. , sm <p 

cos2 <p I 8 P I = I 8 Q I = lOP I cot <p = l. , 
sm <p 

I PQ I = I AB I I 8 P I = a cos2 <p. 
I 8B I 

On the other hand, 

I P{! I = 2 lOP I sin ~ = 2l cos <p sin ~ • 

Hence 

a cos <p = 2l sin ~ . (1) 
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Now, find I PA I: 
~ 

! P A 12 = 1 P B 12 + 1 A B 12 - 2 1 P B 1 . 1 AB 1 cos P BA 

= 12 sin2 cp+a2-21 sin cp.a a sin cp 
21 

.~ 
But if "( = POA, then from the triangle POA we have: 

1 P A 12 = 12 cos2 cp + 12 - 212 cos cp cos "(. 

Equating the two expressions for 1 P A 12 and taking 
into consideration (1), find 

2sin2 ! 
2 

cos y = cos cp - ----cos cp 

( 2sin2 t) 
Answer: 3t2 - arccos cos cp _ 2. 

cos cp 

86. (5 V6+ V22) R. 
87. If the plane cuts the edges AD and CD, then the 

section represents a triangle and the radius of theinscribed 
a 

circle will change from 0 to V2(2cos a+ V 4cos2 a+1)· 
Let now the plane cut the edges AB and BC at points 

P and N, SA and SC at points Q and R, SD"at point K, 
and the extensions of AD and CD at points Land M 
(Fig. 8). Since the lines PQ and NR are parallel and touch 
the circle inscribed in our section, P N is the diameter 
of this circle. Setting 1 P N 1 = 2r, we have 

1 ML 1 =2a V2-2r, 

1 KL 1 = a {2-r V4cos2 a+1, 
cos a 

S _ (a V2-r)2 
MKL- 2cosa • 
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Thus, 

aV2-r 
r= , 

2cosa+ V 4cos2a+1 

whence 

a -V2 
r = ----~--;::;::==:;::==-

1 + 2 cos a + V 4 cos2 a + 1 • 
Answer: 

a 
O<r~ _( , 

V2 2 cosa+ V4 cos2 a+1) 

aV2 
r = -1-+-2 -co-s-a-+--.;....V-;:-:;:4=c=os~2=a=+==-1 • 

88. Let us pass a section by the plane passing through 
the edge AB and the midpoint of CD, point L; K is the 

S 

L 

Fig. 8 

point of intersection of the plane P and AL. The altitude 
dropped from A onto BL intersects BK at Nand BL at Q 
(Fig. 9). It is easy to prove that the centre of the sphere 
lies on the line AQ. Here, the centre of the sphere can lie 
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both on the line seglllent AN (point 0) and on the exten­
sion of AQ (point OJ. 

The radius of the first sphere is equal to the radius of 
the circle touching AB and B K and baving the centre on 

A 

R 0 a L 
\ 

\ 
\ 

r. \ 
\ 

\ 

Of 

Fig. 9 

AN. We denote it by x; x can be found from the relation­
ship 

1 
SBAN="2 (I AB! + 1 BN I) x, 

1 BNI =: 1 BK!=; V21 AB 12+2 1 BL 12_1 AL 12 

vIT 
-- 5 a, 

S 2 S V2 2 
BAN="5 BAL = w- a , 

V2a hence, x = r. The radius of the second sphere 
5+Y 11 

is found in the same way. 
V2a 

Answer: • 
5+ V11 
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89. Let x denote an edge of the tetrahedron, I M N I = 
x 

Y2' If the edge, whose midpoint is M, makes an angle ex 

with the given plane, then the opposite edge makes an an­

gle of ~ - ex. The projection of the tetrahedron on this 

plane represents an isosceles trapezoid with bases x cos ex 

and x sin ex and the distance between the bases equal to ;2. 
x2 

Thus, S = 2y2 (cos ex + sin ex). Besides, by the hypothe-

sis, the angle at the greater base is 60°, whence I cos ex -

sinexl=V;· 

Answer: 3SY2. 
90. Let the edge of the cube be equal to 1. Denote by 0 

~ 
the centre of the face ABCD. From the fact that NMC = 
~ 

60° and NOC = 90° it follows that 0 lies between M and 
C. Setting 10M 1= x,1 NB I = y,we have I MN 1= 2x, 

I NO 1= xY3, I MB I = V ~ + x2 • Applying thetheo­

rem of cosines to the triangles MNB and ONB, we get 

{ 
1 ~r-2+X2=4x2+y2_2xy r 2, 

1 2 
3x2 = "2 + y? - y3 y. 

1 2 
Hence we find: x= yB ' y= y3 . 

Answer: I AM I: I MCI = 2 - y3, I BN I: I NDI 1= 
2, 

91. The plane passing through AAI parallel to BID is 
parallel to the plane DDIBIB, Exactly in the same way, 
the plane passing through DDI parallel to AIC will be 
parallel to the plane AAICIC. 
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On the other hand, the planes passing through the 
edges BCandB1C1 will be parallel to the respective planes 
AB1C1D and A1BCD1. This taken into account, construct 
the section of our polyhedra by the plane parallel to the 
bases and passing through the midpoints of the lateral 
edges and the plane passing through the midpoints of the 

Of ----- K 

l~ 
E l 

Fig. to 

parallell sides of the bases of the prism (see Fig. to). In 
the accompanying figures, Land K are the midpoints 
of opposite edges EF and HG of the triangular pyramid 
EFGH, the edges EF and HG are mutually perpendicular. 
Setting I BC I = x, I AD I = nx, and denoting the 
altitude of the trapezoid ABCD by y and the altitude of 
the prism by I, we find 

un y 
IKSI=ISOI= n+t' ITLI=2"' 

I KL I=y (~ + n~t ), I EF 1== 5ni 3x , 

I GH I =5::13 I. 
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The volume of the prism is equal to (n+~) xyz . The 

volume of the triangular pyramid equals ! I EF 1·1 GH I X 

(5n+3)3 
I KL 1= 24 (n+1)2 xyz. 

(5n+3)3 
Answer; 12 (n+ 1)3 • 

92. Let the altitude of the prism be equal to x. On the 
extension of the edge BIB take a point JC such that 

I BK 1= ;x, I BIK 1= i x. Since KN is parallel to BM 

and I KN I = 21 BM I, the projection of KN on CN is 
twice the length of the projection of BM on CN, that is, 

a 
it is equal to -ys" In the triangle CNK, we have I CN I = 

Va? + ~\ INKI = -ya2 + 4%2,1 CK 1= Y a? +?fx2. 
Depending on whether the angle CINK is acute or ob­
tuse, we shall have two equations 

a2 + 2; x? = ( a2 + ~? ) + (a? + 4x2) 

a 
Answer: ~i or a. 

2 r 5 
93. Denote two other points of tangency by Al and BI 

and the radii of the balls by Rand r. In the trapezoid 
a 

AAIBBI find the bases: I AAI I = 2 R cos 2' I BBI I = 
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a ,/"-2r cos 2" and the lateral sides I ABI I = IAIB I = 2 y Rr, 

and then determine the diagonals I AB I = I Al BI I = 

2 V Rr ( 1 + cos2 ~). If the ball passing through A 

and Al cuts AB at K, then I AIBI2 = I BK I' IBA I, 
whence 

I BK I =::! _2 yRr _ I AB I a ' 

-V 1+cos2 ~ 1+cost 2" 
a 

I AB I cost 2" 
I AK I =::! ----a-. 

1+ CQSI_2 

Other parts into which the line segment AB is divided are 
found in a similar way. 

A nswer: The line segment AB is divided in the ratio 

2 a '2a 2 a 
cos ""2 : SIll 2:: cos 2:. 

94. It is possible to prove that the axis of the cylinder 
must pass through the midpoint of the edge BD and belong 
to the plane BDL, where L is the midpoint of AG. Let the 
axis of the cylinder make an acute angle a with BD. Pro­
jecting the pyramid on a plane perpendicular to the axis 
of the cylinder, we get a quadrilateral AIBIGIDI in which 
I AlGI I = I A G I = 12. The diagonals AlGI and BIDI are 
mutually perpendicular, AlGI is bisected by the point F 
of intersection of the diagonals, and DIBI is divided by F 
into the line segments 6Y3 cos a and 10y3 sin a -
6y3 cosa. From the condition I AIF 1'1 FGI I = IBIF I X 
I FDI I we get for a the equation 

sin 2 a - 5 sin a cos a + 4 cos' a = 0, 

whence we find tan al = 1, tan a2 = 4. But I BIDl I = 
10y:3 sin a and is equal to the diameter of the base of 
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the cylinder. Two values are obtained for the radiue of 

the base of the cylinder: 5y6 and 20V3. 
2 V17 

95. On the edge A S take a point K such that 1 A K 1 = 
a. Then the points B, D, and K belong to the section of 
the cone by a plane parallel to the base of the cone 
(I AB 1 = 1 AD 1 = 1 A K I). From the fact that C lies in 
the plane of the base it follows that the plane BD K bisects 
the altitude of the cone. Thus, the surface area of our 
cone is four times the surface area of the cone the radius 
of the base of which is equal to the radius of the circle 
circumscribed about the triangle BD K with generatrix 
equal to a. 

4n V2 a2 (Vb2 .+2a2'-a) 
Answer: • 

jI b2 +2a2 ·V 3 Vb2 +2a2 -4a 

96. Let the radius of the base of the cone be equal to R, 
altitude to h, the edge of the cube to a. The section of the 
cone by the plane parallel to the base and passing through 

the centre of the cube is a circle of radius R 2h - 2~y2; 
in which a rectangle (the section of the cube) with sides a 
and aV2 is inscribed, that is, 

3 2= R2 (2h-a V2)2 (1) 
a h2 • 

The section of the cone parallel to the base of the cone 
and passing through the edge of the cube opposite to the 

edge lying in the base isa circle of radius R h - ;V2. 
On the other hand, the diameter of this circle is equal to a, 
that is, 

a=2R h-~ V2 . (2) 

From Relationships (1), (2) we get 

h= V2 (5+ V"3) a, R=2 V3-1 a. 
4 2 
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Answer: 

3 
97. 5-

Problems in Solid Geometry 

n (53-7 y3) Y2 
48 

~ ~ 
98. From the equality A CB = ADB and perpendicular­

ityof AB and DC we can obtain that the points C and D 
are symmetric with respect to the plane passing through 
AB perpendicular to CD. as . 

Answer: 3. 
99. Let K be the midpoint of AB, P the foot of the 

perpendicular dropped from K on CS. On AB take points 
M and N such that PM N is a regular triangle (Fig. 11). 

S 

c 

Fig. 11 Fig. 12 

The pyramid SP M N can be completed to obtain a regu­
lar prism PMNSMINI so that PMN and SMINI will be 
its bases and PS, MN}t NNI its lateral edges. The prism 
A IBICA zBzS will be homothetic to the prism PM NSMIN1 
with centre in S and ratio of similitude I CS 1/1 PS I. It 
is easily seen that the sought-for part of the volume 
of the pyramid SABC contained inside the prism 
A IBI CA 2P 2S is equal to the ratio I M NI / IA B I. Setting 
AB = ay3, I CS I = 2a, we find: 

V13 3 5 
I SK I = 2 a, 1 CK I =2"a, I PS I =4" a, 
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I PK 1= 3 f3 a, 

2 3 
I MN 1=1 PI( I ~=-2 a, 

V3 

. Y3 
Answer. -2-' 

99 

;-
I M N J / I AB I = 12 3 . 

100. Let the plane passing through BICI intersect 
A B and DC at points K and L (Fig. 12). By the hypothe­
sis, the polyhedra AKLDA1BICIDI and KBCLB1C1 have 
equal volumes. Apply to them Simpson's formula (Prob­
lem 15), setting I A K I = 1 DL 1 = a. Since the alti­
tudes of these polyhedra are equal, we get the following 
equation for a: 

16 
whence a=T' 

Denote the altitude of the pyramid by h. Introduce 
a coordinate system taking its origin at the centre of ABCD 
and with the x- and y-axes respectively parallel to AB 
and BC. The points A, C, and DI will then have the coor-
. (7 7) (7 7 ) ( 1 1 ) 

dma tes -"2' -"2' 0 , "2'"2' 0 , -"2'"2' h 
respectively. It is not difficult to find the equation of 
the plane ACDI : hx - hy + z = O. The plane KLCIB I 
will have the equation 10hx - 8z + 3h = O. The normal 
vector to the former plane is n (h, -h, 1), to the latter 
m (10h, 0, -8). The condition of their perpendicularity 

yields 10h2 - 8 = 0, ;h = 2Y5. The volume of the 
5 

'd' 38 Y5 pyraml IS • 
5 

101. Two cases are possible: 
1. The lateral sides of the trapezoid are the projections 

of the edges AB and BICI . It is possible to prove that in 
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this case the centre of the sphere is found at the point C. 
The volume of the pyramid will be equal to 3a3/8. 

2. The lateral sides of the trapezoid are represented 
by the projections of the edges AB and A ICI . In this case 
the centre of the sphere is projected into the centre of 
the circle circumscribed about the trapezoid ABCIA i, the 
altitude of the trapezoid is equal to a "V 5/3 , the volume 
of the prism is equal to a3Y5!4. 

3a3 a3 V5 
Answer: -8- or 4 . 

n 
102. 3"" a (a2+ 2b2). 

1.03. Project the given polyhedra on the plane ABC 
(Fig. 13). The projections of the points AI, B I , and CI are 
not shown in the figure since they have coincided with the 

p 

Fig. 13 

points A, B, and C; SI and DI are the respective projec­
tions of the points Sand D. If on the line segment PSI 
a point K is taken such that I P K I = I ND II, then the 
point K is the projection of the point {(I at which the 
edge PS intersects the plane A IBICI. Thus, the desired 
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ratio is equal to 

I KB I ! NDI I -I PB I 
1 BP I I PB I 

(I SIN !-I DISII)-(I PSI I-I BSII) 
IPSII-IBSII 

I BS I I-I DISI I 
I S 1M I -I BS I I · 

101 

(1) 

Consequently, our problem has reduced to finding the 
line segments I SIM I, I BSI I, I DISI I, where SI is a 
point from which the sides of the triangle BDIM are seen 
at equal angles. BDIM is a right triangle with legs 
I DIM I = 2a, I BDI I = a V 3. 

Notation: I SI M I = x, I SI B ~ = y, I SIDl I = z. 
Rotate the triangle DIS 1M through an angle of 60° about 

the point DI (Fig. 13, b), DIS IS 2 is a regular triangle 
~ 

withsidez; thepointsB, SI' S2' Ml are collinear, BDIMI= 
150°. From the triangle BDIMI find x + y + z = a¥13. 
The altitude of the triangle BDIMI dropped on the side . V3 2a z 
BMl IS equal to a -, whence z = "r-' y + 2- = 

13 r 13 

V 3a2 6a N .. fi d h 5a 
3a2- 13 = 13' ow It IS easy to n t at y = V 13 ' 

6a 
x = "r-' Substituting the found values into (1), we 

r 13 
get that the required ratio is equal to 3 (measured from 
the vertex B). 

104. Any tangent plane separates space into two parts; 
here two cases are possible: either all the three spheres 
are located in one half-plane or two in one half-plane and 
one in the other. It is obvious that if a certain plane 
touches the spheres, then the plane symmetric to it with 
respect to the plane passing through the centres of the 
spheres is also tangent to these spheres. Let us show 
that there is no plane touching the given spheres so that 
the spheres with radii of 3 and 4 are found on one side of 
it, while the sphere of radius 6 on the other. 

Let the centres of the spheres with radii of 3, 4, and 6 
be at the points A, B, and C. The plane touching the given 
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spheres in the above indicated manner divides the sides 
A C and BC in the ratios 1 : 2 and 2 : 3, respectively, 
stbat is, it will pass through points K and L on A C and BC 
such that 1 C K 1 = 22/3, 1 CL 1 = 33/5. The distance 
from C to KL is easily found, it is equal to 33 -V 3/91 < 6. 
Hence it follows that through KL it is impossible to pass 
a plane touching the sphere with radius of 6 and centre 
at C. We can show that all other tangent planes exist, 
they will be six all in all. 

105. The solution of this problem is based on the fact 
that the extension of an incident beam is symmetric to the 
reflected beam with respect to the face from which the 
beam is reflected. Introduce a coordinate system in a nat­
ural way, taking its origin at the point N, and the edges 
N K, N L, and N M as the x-, y-, and z-axes; denote by Q' 
and R' the successive points of intersection of the straight 
line S P with the coordinate planes different from LN M. 
We have 1 PQ 1 = 1 PQ' I, 1 Q R 1 = I Q' R' I· 

The point P has the coordinates (0, 1,-V3). Denote 
by ex, ~, ex the angles made by the ray Sl! with the coor­
dinate axeS. It follows from the hypothesIs that ~ = n/4, 
then cos ex is found from the equality 2 cos2 ex -f- cos2 ~ = 
1, cos ex = 1/2 (ex is an acute angle). Consequently, the 
vector a (1/2, -V2/2, 1/2) is parallel to the line SP. If 
A (x, y, z) is an arbitrary point on this line, then 

~ ..... 
OA = OP + ta, 

or in coordinate form, 

-V2 y=1+-2-t, 

The coordinates y and z vanish for tl = - V2 (this 
"ill be point Q') and for t2 = --2 Y3 (point R'). Thus, y 2 - -V2 - (~... ...::~,.~ 
QI ( -'-2-' 0, -V3----"2) , R' (- y3, 1- -V6, 0), 

I PQ' ! = -V2, I Qf R' 1=2 Y3-1l2. 

Answer: 2 Y3. 
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106. Denote by K the point of tangency of the sphere 
with the extension of CD, and by M and L the points of 
tangency with the edges AD and BD, N is the midpoint of 
BC (Fig. 14). Since I CD I = I DB I = I DA I, DN is per­
pendicular to the plane ABC, I DK I = I DM I = IDL I, 
KL is parallel to DN, ML is parallel to AB, hence, the 

~ 
plane KLM is perpendicular to the plane ABC, KLM = 
90°. If 0 is the centre of the sphere, then the line DO is 

OJ 
K 

B 

C 

Fig. 14 Fig. 15 

perpendicular to the plane KLM, that is, DO is parallel 
to the plane ABC, consequently, I DN I = 1 (to the radi­
us of the sphere). In addition, DO passes through the 
centre of the circle circumscribed about the triangle KLM, 
that is, through the midpoint of K M. Hence it follows 
~ 1 ~ 

that ODM = 2" KDM. Further, I DA I = I DC 1= 

VI CN 12 + I DN 12 = V3, I CA I = I CB I cos 300 = 

-., - ~./"'-...... 
y 6, i.e. ,6, CDA is right-angled, CDA = 90°, OD M = 

45°, I D M I = I OM I = 1. The required segment of the 
tangent is oqual to I AM I = I AD I - I DM I = va 
-1. 



104: Problems in Solid Geometry 

107. Let 011 Os, 0 3 be the points where the balls are 
tangent to the plane P: 0 1 for the ball of radius r, and O2 
and 0 3 for the balls of radius R. 0 is the vertex of the 
cone (see Fig. 15) and rp the angle between the genera­
trix of the cone and the plane P. It is possible to show that 

I 0 10 I = r cot ~, I 002 I = I 003 I = R cot ~ , 

I 0 10 2 1 = 1010 3 1=2 VRr, 102031 =2R. 

Since I 0 10 2 I = I 0 10 3 I f only the angle 0 20 10 3 can be 
equal to 150°, hence, R/r = 4 sins 750 = 2 + vi 

Further, if L is the midpoint of 0 20 3, then 

I OL I = VI OOa 12_" I 03L 12=R V cotS t-1, 

lOlL I = VI 0 10 3 12_1 03L 12= V 4Rr-Rs. 

The point 0 is found on the line OIL, and it can lie 
either on the line segment OIL itself, or on its extension 
beyond the points Lor 0 1 (0' and 0" in the figure). Respec­
tively, we get the following three relationships: 

lOlL I = I 001 I + I OL I, lOlL I = 1010' 1-10' LI, 

lOlL I = I 0" L I - I 0"01 I· 

Making the substitutions R = (2+ V3) r, cot t = x 

in each of these relationships, we shall come to a contradic­
tion in the first two (x = 1 or x = - 2 V 3/3), in the third 
case we find x = 2V 3/3. 

1 
Answer: cos rp = '[ . 
108. Denote by K and L the midpoints of the edges AD 

and BC, N andParethepointsof intersection of the passed 
plane and the lines AB and A C, respectively (Fig. 16). 
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Find the ratios I PA 1/1 PC I and I PK 1/1 PM I. Draw 
KQ and A R parallel to DC, Q is the midpoint of A C. 

I PA I I AR I I DM I 2 
I AR I = I DM I, I PC I = I MC I = I MC I =3' 
I PK I _ I KQ I _ I DC I 5 
I PM I - I MC I - 2 I MC I =6' 

Then find 

I AN I 2 I PN I 4 
I NB I -3"' I PL I =:5' 
V P AKN I PAl ·1 AK I . I AN I 2 
V ABeD - I AC I ·1 AD I ·1 AB ! "5 ' 

that is, V pAKN = 2. Since the altitude dropped from A 
on PN K is equal to f, S PNK = 6, 

IPKI·IPNI 3 
I PM I .1 P L I 2" t S PM L = 9. 

Thus, the area of the section will be SP.ML - S PNK = 3. 
t09. Knowing the radius of the ball inscribed in the 

regular triangular pyramid and the altitude of the pyra-

D o 

------~--~----~c 

B 

Fig. f6 

mid, it is not difficult to find the side of the base. It is 
equal to f2, I M K I = I KN I (by the hypothesis, the 
tangents to the ball from the points M and N are equal 
in length). 
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Let I BM I = X, I BN I = y. Finding I MNI by the 
theorem of cosines from the triangle BMN, and I MK I 
and I NK I from the respective triangles BMK and BNK, 
we get the system of equations 

{ X2+y2-xy=49, { X2+y2-xy=49, 
x2-f2x= y2-f2y ~ (x-y) (x+ y-f2)= O. 

This system has a solution: Xl = Yl = 7. In this case the 

distance from K to MN is equal to 4Y3 _ 7V3 = V3 
2 2 

< 2, that is l the plane passing through M Nand 
touching the ball actually intersects the extension of S K 
beyond the point K, 

Another solution of this system satisfies the condition 
X + y = f2. From the first equation we get (x + y)2 -
3xy = 49, xy = 95/3. Hence it follows that 

Consequently, the altitude dropped from K on MN is equal 

to !...-Y3 > 2, that} is, in this case the plane passing 
6 

through MN and touching the ball does not satisfythe con­
ditions of the problem. 

f2 
Answer: 6 f3 • 

110. From the fact that the edges of the pyramid ABCD 
touch the ball it follows that the sums of opposite edges 
of the pyramid are equal. Let US complete the pyramid 
ABCD to get a parallelepiped by drawing through each 
edge of the pyramid a plane parallel to the opposite edge. 
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The edges of the pyramid will be diagonals of the faces of 
the parallelepiped (Fig. f 7), and the edges of the paral­
lelepiped are equal to the distances between the midpoints 
of the opposite edges of the pyramid. Let I AD I = a, 
I BC I = b, then any two opposite edges of the pyramid 
will be equal to a and b. Let us prove this. Let I AB I = 
x, I DC I = y. Then x + y = a + b, x2 + y2 = a2 + b2 

Fig. f7 

(the last equality follows from the fact that all the faces 
of the parallelepiped are rhombi with equal sides). 

Hence it follows that x = a, y = b or x = b, y = a. 
Hence, in the triangle ABC at least two sides are equal 
. ~ 
III length. But ABC = fOO°, consequently, I AB I = x = 
I BC I = b, I AC I = a, I DB I = b, I DC I = a. 

From the triangle ABC we find a = 2b sin 50°, 

hA a2 V3 .. /- 0 

whence h R = 2b2 sin f000 = Y 3 tan 50 . 
111. The equality of the products of the lengths of the 

edges of each face means that the opposite eages of the 
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pyramid are equal in length. Complete the pyramid SABC 
in a usual way to get a parallelepiped by passing through 
each edge a plane parallel to the opposite edge. Since the 
opposite edges of the pyramid SABC are equal in length, 

,,-------:::::::::. A 

c 

Fig. 18 

the obtained parallelepiped will be rectangular. Denote 
the edges of this parallelepiped by a, b, and c, as is shown 
in Fig. 18. 

In the triangle BCD draw the altitude DL. From the 
triangle BCD find 

I DL 1_ bc 
- -yb2 + c2 ' 

1 AL 1 = ya2+ 1 DL 12= ya2bl~b2c2+c2a2 
V b2+ c2 ' 

1 
SABC = - ya2b2+b2c2+c2a2, 

2 

The volume of the pyramid SABC is one third the volume 
of the parallelepiped. the altitude on the face ABC is 
given; thus we get the equation 

-. / 102 -y a2b2+b2c2+ c2a2. V 55= abc. (1) 

By the theorem of cosinos, for the triangle ABC we get 

.. /17 6a2=-Ya2+c2.y'"a2+b2·V T· (2) 
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And, finally, the last condition of the problem yields 

c2 - 2a2 - 2b2 = 30. (3) 

Solving System (f)-(3), we find a2 = 34, b2 = 2, 
c2 = f02. 

34 "1'6 
Answer: ; • 

ff2. Denote by M and N the points at which the 
tangents drawn from A and B touch tho ball, MI and N1 
are projections of tho points M and N on the plane ABC 
(Fig. f9, a; the figure represents one of the two equivalent 

Lt----~O 

A~-----.--' 8 

(6) 

Fig. f9 

cases of arrangement of the tangents when these tangents 
are skew lines; in two other cases these tangents lie in one 
and the same plane). The following is readily found: 
I A M I = I C N I = l, I M MIl = INN I I = l sin a, 
I A MI I = I CNI I = l cos a. Find I BMI I and I BNI I 
(Fig. f9, b; 0 tlie centre of the ball, OL II BMI ) 

I BNII=I BMII=I OL l=yr2-(lsina-r)2 

= y 2rl sin a-l2 sin2 a. 

When rotated about the point B through an angle <p = 

/'---
ABC, the point A goes in C, MI in N I , consequently, the 
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triangles BMINI and BAC arc similar, 

I AC I 
IMNI= IMINII=IBMIIIABI 

= ~a V2rl sin a-l2 sin2 a. 

Triangle MIBNI is obtained from the triangle ABC by 
. ~ 

rotating it about B through an angle l' = ABMI followed 
by a homothetic transformation. Consequently, the angle 
between MINI and A C is equal to y, and since MINl. is 
parallel to M N, the angle between M N and A Cis also 
equal to 1'. 

From the triangle BMIA we find 
2rl sin a-l2 sin2a + l2-l2 cos2 a 

cos y = ---:----;-::;::==;==:::::::::;::=;:::~:---
21 Y2rl sin a-l2 sin2 a 

rsina 
Y2rl sina-l2 sin2 a • 

Then 

. V2rl sin a- (l2+ r2) sin2 a 
SIn ",= . 

I Y2rlsi n a-l2 sin2a· 

Using the obtained values for I M N I, I ill Ml I, and 
sin 1', find the volume of the pyramid ACMN: 

i 
VACMN=6" I AC I' IMN I· IMMI I siny 

2a2 sin a 
3 V2rl sin a-(12+ r2) sin2 a. (i) 

We now take a point P such that M1N1CP is a paral­
lelogram, hence, M NCP is also a parallelogram. Let ~ be 

~ 
an angle between A M and CN, then ~ = AMP. But the 
triangle ABMJ is obtained from the triangle CBN1 by 
rotating the latter about B clockwise through an angle 
~ 

q> = ABC. Hence it follows that the angle between AMI 
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~ 
and CNl is equal to <p, and, hence, A MlP is also equal 
to <p, that is, the triangles A MlP and ABC are similar 
to each other. From this similarity we find 1 API = 

/"... 
2a cos ct. The angle ~ is congruent to the angle AMP, AMP 
is an isosceles triangle in which 1 AMI = 1 M P 1 = l, 
I API = 2a cos ct. Consequently, 

. ~ a cos ct 
SIn 2= l ' 

• R. 2' ~ ~ 2a cos ct y l2- a2 cos2 ct SInp= sm -cos-= . 
2~ 2 fA 

Express the volume of the pyramid A C M N in a diffo­
rent way: 

V ACMN = ! I AM I· 1 CN 1 x sin ~ 
f = 3" ax cos a V 12 - a2 cos2 ct, 

where x is the desired distance. Comparing this formula 
with the equality (f), we get 

2a tan ct Y2rl sin a-(12+ r2) sin2 a 
x= . -V l2 - a2 cos2 ct 

113. Let I EA I = x, the area of the triangle EMA will 

be the greatest if 1 EH 1 = I HA 1 = ~2, and will equal 

=- 1 f!. _ ~. The distance from B to the plane EA // 
2 JI 2 4 
is not greater than I AB 1 = 1. Since SAEB = SEBC' 
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Thus, x = f, and the edge AB is perpendicular to the 
plane EAN; ABCE is a square f cm on a side. 

Consider two triangular prismatic surfaces: the first is 
formed by the planes ABCE, AHE, and BCH, the second 
by the planes ABCE, ECH, and ABH. Obviously, the 
radius of the greatest ball contained in the pyramid 
ABCEH is equal to the radius of the smallest of the balls 
inscribed in these prisms. And the radius of the ball in­
scribed in each of these prisms is equal to the radius of 
the circle inscribed in the perpendicular section, The per­
pendicular section of the first prism represents a right 
triangle with legs f and f/2, the radius of the circle inscribed 

in this triangle is equal to 3 -4 Y5. The perpendicu­

lar section of the second prism is a triangle A HE, the 

radius of the circle inscribed in it is equal to y 2 - f > 
2 

3 -y5 
4 

3-Y5 
Answer: 4 • 
ff4. From the fact that the straight:line perpendicular 

to the edges A C and BS passes through the midpoint of B S 
it follows that the faces A CB and A CS are equivalent. 

l Let SASB = SBSC = Q, then SACB = SACS = 2Q. 
Denote by A l' Bh Cl , Sl the projections of M on the res­
pective faces BCS, ACS, ABS, ABC; hA' hB' hc, hs 
are the altitudes dropped on these faces, V the volume of 
the pyramid. Then we shall have 

3V 
1 MAl 1+21 MBll-t-1 MC I 1+21 MS11=Q' 

But, by the hypothesis, 1 MB 1 + 1 MS 1 = I MA) 1+ 
1 MBI I + I MCI 1 + I M Sl I. From these two equalities 
we have: 

3V 
1 MB 1 +1 MBll+ 1 MS 1+IMSll =0' 

But 
f f Q 

V=T hs·2Q=T hB ,2Q=T (hB+ hs). 
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Consequently, I MB I + I MBI I + I MS I + I MS1 I = 
hB + hs· On the other hand, I MB I + I MBI I > 
hB' I MS I + I MS1 I ~ hs. Hence, I MB I + I MBI I = 
hB' I MS I + I MS1 I = hs, and the altitudes dropped 
from Band S intersect at the point M, and the edges A C 
and B S are mutually perpenaicular. 

FrQm the conditions of the problem it also follows that 
the common perpendicular to A C and BS also bisects A C. 
Let F be the midpoint of A C, and E the midpoint of B S. 
Setting I FE I = x, we get 

1 1 .. / 3 
Q=SASB=2 I SB I· I AE I =2 V X2 +2 , 

y6 I 1 r 3 
We shall get the equation -2-V xZ+T= V X 2 +2 , 

whence X= ~ • Considering the isosceles triangle BFS 

in which I BS I = 1, I BF I = IF S I, the altitude IF E I = 
{-, M the point of intersection of altitudes, we find 

IBMI = ISMI = ~iO . 
115. Since the lateral edges of the quadrangular pyra­

mid are equal to one another, its vertex is projected into 
the point 0 which is the centre of the rectangle ABCD. On 
the other hand, from the equality of the edges of the 
triangular pyramid it follows that all the vertices of it~ 
base lie on a circle centred at o. 

Let the circle on which the vertices of the base of the 
triangular pyramid lie intersect the sides of the rectangle 
AB CD at points desig!}ated in Fig. 20, a. From the fac1 
that the lateral faces of the triangular pyramid are equiv­
alent isosceles triangles it follows that the angles a1 
the vertices of these triangles are either equal or theil 
sum is equal to 1800 • Hence, the base is an isoscelel 
triangle. (Prove that it cannot be regular.) Further, tW( 
vertices of this triangle cannot lie on smaller sides 0 
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the rectangle ABCD. If the base will be represented by 

the triangle LN S 7 then I SL I = I LN 17 {iN = 90°7 
and, hence, it will follow that ABeD is a square. But 
if the triangle LNR will turn out to be the base, then 

L 
If 

A 

Fig. 20 

N 

(a) (h) 

from the condition a < 600 it will follow that I BNI > 
I NR I. Hence, the sides RL and LN will be equal which 
is possible when the points K and L coincide with the 
midpoint of AB .. 

Reasoning in a similar way, we shall come to another 
possibility: the vertices of the base of the triangular pyra­
mid are situated at the points R, N, and p, P being the 
midpoint of CDt. 

Consider the first case (Fig. 20, b). Let I LO I = 
CZ I ON I = I OR I = r. Then I NR I = I CD I = 2r tan 2· 

/"'-... ~ 
But, since LEN + NER = 180°7 the triangles LNE and 
NER, being ... brought together (as in Fig. 20, C)7 form 
a right triangle LNR. Hence, 

I LN I = Y 4 I LE 121_ I N R II 

= V"" 4112 +4rl -4r21 tan2 T' 
On the other hand, 

L LN II = ( r + r 1/1-tan2 ~ ) 2 + rl tan2 ~ • 
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Thus, 
2h2 

.,
2= V · a a 

2tan2 -+ f-tan2 --f 2 2 

Considering the triangle N R P in a similar way, we get: 
r2 < O. 

Answer: 
8h3 tan !:... 

2 

3 (2tan2 ~ + V f-tan2 ~ -f) • 

116. Extend the edge SA beyond the point S, and on 
the extension take a point A I such that I SA I I = I SA I. 
In SAIBC the ... dihedra~ angles at the edges SAl and SC 
will be equal, and, sIDce I SAl I = I SC I, I AlB I = 
I CB I = b. The triangle ABA" is a right triangle with 
legs a and b. Consequently, the hypotenuse I AAI I = 
21 AS I = ya2 + b2• 

Answer; ~ ya2 +b2• 

lf7. Consider the tetrahedron with edge 2a. The sur~ 
face of the sphere touching all its edges is broken by the 
surface of the tetrahedron into four equal segments and 
four congruent curvilinear triangles each of which is 
congruent to the sought~for triangle. The radius of the 

sphere is equal to a Y2, the altitude of each segment is 
2 

(Y2 f 1(2) equal to a 2-"2 Y 3"' consequently, the area 

of the sought~for curvilinear triangle is equal to 

f [ ( y2 ) 2 y2 (Y2 f .. /2)] 4" 4na2 ----r -4.2na2 2 -2- - 2" V "3 

na2l .. r-
=6(2 y 3-3). 

118. Consider the cube with edge equal to 2V2. The 
sphere with centre at the centre of the cube touching its 
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edges has the radius 2. The surface of the sphere is broken 
by the surface of the cube into six spherical segments and 
eight curvilinear triangles equal to the smallest of the 
sought-for triangles. 

Answer: n(3y2-4) and n(9Y2-4). 
y5-f 

119. arccos 2' 

120. Pass a section through the axis of the cone. Con­
sider the trapezoid ABCD thus obtained, where A and B 
are the points of tangency with the surface of one ball, 
C and D of the other. It is possible to prove that if F is 
the point of contact of the balls, then F is the centre of 
the circle inscribed in ABCD. 

In further problems, when determining the volumes 
of solids generated by revolving appropriate segments, 
take advantage of the formula obtained in Problem f8. 

f 
121. 3" SR. 

122. Take advantage of the Leibniz formula (see (1), 
Problem f53) • 

3 1 MG 121= I MA 11 + 1MB 121+ I MC II 

- ! (I AB 12 + I BC II + 1 CAli), 

where G is the centre of gravity of the triangle AB C. 
If now ABC is the given right triangle, AIBICI the 

given regular triangle, G their common centre of gravity, 
then 

1 AlA 12+ I AlB 121+ 1 AIC 12 =3 I AIG 12+ i b21 

4 
=al +T b2 • 

Writing analogous equalities for BI and CI and adding 
them together, we obtain that the desired sum of squares 
is equal to 3a21 + 4b2l• 

• Here and henceforward (f) means: I.F. Sharygin, 
Problems tn Plane Geometry (Nauka, Moscow, 1982). 
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f23. Let the side of the base of the pyramid be equal 
to a, and the lateral edge to b. Through FE pass a plane 
parallel to A SG and denote by K and N the points of in~ 
tersection of this plane with BG and SB. Since E is the 
midpoint of the slant height of the face SGB, we have 
1 A F 1 = 1 G K I = a14, I SN I = b14, IKE 1 = 2 1 EN I. 

Through L draw a straight line parallel to A Sand 
denote its point of intersection with SG by P. We shall 
have 1 SP I = O.fb. The triangles LPG and FN K are 
similar, their corresponding sides are parallel, besides, 
LM and FE are also parallel, that is, 1 PM III MG 1 = 
I NEill E K I = f/2, consequently, I SM I = 0.4b. 

Now, find 

f9 f5 f 
I LF 12_ 400 a2 , I ME 12= 400 a2+ fOO b2 • 

From the condition I LF I = I ME I we get a = b. FNK 

is a regular triangle with side ! a, I FE 12 = f76 a2 = 7. 

Consequently, a = b = 4. 
f6 .. 1"­

Answer: 3 r 2. 

f24. Prove that the plane cutting the lateral surface 
of the cylinder divides its volume in the same ratio in 
wbich it divides the axis of the cylinder. 

naS 
Answer: 24'. 
f25. Each face of the prism represents a parallelo~ 

gram. If we connect the point of contact of this face and 
the inscribed ball with all the vertices of this parallelo~ 
gram, then our face will be broken into four triangles, 
the sum of the areas of two of them adjacent to the sides 
of the bases being equal to the sum of the areas of the 
other two. The areas of triangles of the first type for all 
the lateral faces will amount to 2S. Hence, the lateral area 
is equal to 4S, and the total surface area of the prism 
to 6S. 

f26. If the spheres a and ~ intersected, then the 
surface area of tlie part of the sphere ~ enclosed inside 
the sphere a would be equal to one fourth the total Sur­
face ~re~ of the sphere a. (This part would represept 
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11 

a spherical segment with altitude ;R' where r is the 

radius of aT R the radius of ~. Consequently, its surface 
t 

area will be 2nR ;R = nrl .) Hence, the sphere a contains 

inside itself the sphere ~, and the ratio of the radii is 
equal to 11 So" 

t27. When solving this problem, the following facts 
are used: 

(1) the centre of the ball inscribed in the cone lies 
on the surface of the second ball (consider the correspond­
ing statement from plane geometry); 

(2) from the fact that the centre of the inscribed ball 
lies on the surface of the second ball will follow that the 
surface area of the inscribed ball will be equal to 4Q, 
and its radius will he V Q/n; 

(3) the volume of the frustum of a cone in which the 
ball is inscribed is also expressed in terms of the total 
surface area of the frustum and the radius of the ball (the 
same as the volume of the circumscribed polyhedron), 

that is, V = ~ Sl IQ. 
3 Y 'n 

128. Prove that if Rand r are the radii of the circles 
of the bases of the frustum of a cone, then the radius 
of the inscribed ball will be V Rr. 

. S 
Answer. 2". 

r 129: An; of the sections under consideration rerre­
sents an isosceles triangle whose lateral sides are equa to 
the generatrix of the cone. Consequently, the greatest area 
is possessed by the section in which the greatest value is 
attained by the sine of the vertex angle. If the angle 
at the vertex of the axial section of the cone is acute, 
then the axial section has the greatest area. If this angle 
is obtuse, then the greatest area is possessed by a right 
triangle. 

5 
Answer: 6" n. 
130. Draw SO which is the altitude of the cone to form 

three pyramids: SABO, SBCO, and SCAO. In each of these 
pyramids the' dihedr~l angles at th~ l~teral edges SA 
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and SB, SB and SC, SC and SA are congruent. Denoting 
these angles by x, y, and z, we get the system 

{ 
x+y=~, 
y+z= 'V, 
z+x=a, 

Whence we find a-~+ 'V and the desired angle 
Z= 2 ' 

wUI be equal to n-a1 ~-'V • 

f31. The chord BC is parallel to any plane passing 
through the midpoints of the chords A B and A C. Conse­
quently, the chord B C is parallel to the plane passing 
through the centre of the sphere and the midpoints of the 

......... -arcs AB and A C. Hence it follows that the great circle 
passing through B and C and the great circle passing - -through the midpoints of the arcs AB and A C intersect 
at two points K and Kl so that the diameter KKI is paral­
lel to the chord BC. 

nR l 
Answer: -2- ± 2" . 

f32. It is easy to see that the section of the given 
solid by a plane perpendicular to the axis of rotation re­
presents an annulus whose area is independent of the 
distance between the axis of rotation and the plane of 
the triangle. 

na3 Va 
Answer: 24 . 

f33. If the given plane figure represents a convex pol­
ygon, then the solid under consideration consists of 
a prism of volume" 2dS, half-cylinders with total vol­
ume nptP, and a set of spherical sectors whose sum is a ball 

of volume ::Jtd3. Consequently, in this case the volume of 

the solid will be equal to 2dS + nptP + : ncP. Obvious­

ly, this formula also holds for an arbitrary convex figure 
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134. Let 0 be the centre of the ball, CD its diameter~ 
and M the midpoint of BC. Prove that 1 AB 1 = 1 AC I. 
Here, it is sufficient to prove that A M is perpendicular 
to BC. By the hypothesis, SA is perpendIcular to OS, 
besides, S M is perpendicular to OS (the triangles C SD, 
CSB, BCD are rIght triangles, 0 and M are the respective 
midpoints of CD and CB). Consequently, the plane AMS 
is perpendicular to OS, A M is perpendicular to OS. But 
A M is perpendicular to CD, hence, A M is pe~endicular 
to the plane BCD, thus, <4M is perpendicular to BC. 

Ra3 V4bl -al 

Answer: 6 (4RI+a2) • 
135. In Fig. 21, a: SABC is the given pyramid, SO 

is its altitude, and G is the vertex of the trihedral angle. 

E 

Fig. 21 

8 
(II) 

s 

It follows from the hypothesis, that G lies on SO. Besides, 
intersecting the plane of the base ABC, the faces of the 
trihedral anEle form a regular triangle whose sides are 
parallel to the sides of the triangle ABC and pass through 
ItS vertices. Consequently, if one of the edges of the trilla­
dral angle intersects the plane ABC at point E and the 
edge CSB at foint F, then F lies on the slant height SD 
of the latera face CSB, and 1 EDI = t DA I. By the 
hypothesis, 1 SF 1 = 1 FD I. Through S draw a straight 
line parallel to EO and denote by K the point of inter~ 
section of this line with the line EF (Fig. 2f, b). We have 

1 SG 1 1 SK liED 1 3 
1 SK 1 = 1 ED I· Hence, 1 GO 1 = I EO I = I EO I = 4' 
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Thus, the volume of the pyramid GABC is 4/7 the 
volume of the pyramid SABC. 

On the other hand, the constructed trihedral angle di­
vides the portion of the pyramid above the pyramid 
GABC into two equal parts. 

A nBwer: The volume of the portion of the pyramid 
outside the trihedral angle is to the volume of the por­
tion inside it as 3; if. 

V · 
136. "6' 
137. Figure 227 a to d, shows the common parts of 

these two pyramids for all the four cases. 
(1) The common part represents a parallelepiped 

(Fig. 22, a). To determine the volume, it is necessary 
from the volume of the original pyramid to subtract the 
vohunes of three pyramids similar to it with the ratio of 
similitude 2/3 and to add the volumes of three pyramids 
also similar to the original pyramid with the ratio of 
similitude 1/3. Thus, the volume is equal to: 

(2) The common part is an octahedron (Fig. 22, b) 
whose volume is 

(3) The common part is represented in Fig. 22, c. To 
determine its volume it is necessary from the volume of 
the original pyramid to subtract the volume of the pyra­
mid similar to it with the ratio of similitude equal to 1/3 
(in the figure this pyramid is at the top), then to subtract 
the volumes of three pyramids also similar to the origi­
nal pyramid with the ratio of similitude equal to 5/9 
and to add the volumes of three pyramids with the ratio 
of similitude equal to 1/9. Thus, the volume of the com­
mon part is equal to 

[ ( 1 ) 3 ( 5 ) 3 ( 1 ) 3] 110 
V 1-"3 -3 9" +3 9 = 243 V. 
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(h) 

(d) 

Fig. 22 

(4) The common part is represented in Fig. 22, d. Its 
volume is 

138. Let the edge of the regular tetrahedron ABeD 
be equal to a, and l( and L be the midpoints of the edges 
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CD and AB (Fig. 23). On the edge CB take a point M 
and through this point draw a section perpendicular to KL. 
Setting I CM I = x, determine the~quantity x for which 
the rectangle obtained in our section will have the angle 

A 

o 

c 

Fig. 23 

between the diagonals equal to a. Since the sides of the 
obtained rectangle are equal to x and a - x, x can be 
evaluated from the following equation: 

-x a 
--=tan-2 ' a-x X= 

a 
a tan '2 

a • 
f+tan2" 

If we take on the edge BC one more point N such that 
I BN I = I CM I = x, and through this ]Joint draw a sec­
tion perpendicular to KL, then we shall obtain another 
rectangle with the angle between the diagonals equal to ct. 
Hence it follows tluit, on being rotated anticlockwise 
about KL through an angle a, the plane BCD will pass 
throuEh the points K, p, and N. Thus, on being rota ted, 
the plane BC]) will cut off th~ tetrahedron ABeD a pyra-
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mid KPNC whose volume is equal to 

I KC I I CP I I CN I x (a-x) 
I CD I' 1 CA 1 • 1 CB 1 VABcn= 2a2 V 

tan ~ 
= 2 v. 

2 (1+tan ~) 
Similar reasoning will do for any face of the tetrahedron. 
Consequently, tlie volume of the common part will be 

a 
f + tan2 '2 

equal to V. 
( f+tan~ )1 

139. Let the cube ABCDAIB1CID, be rotated through 
an angle a about the diagonal A CI (FIg. 24). On the edges 

'Cf 

Q 

o 
Fig. 24 

A]B] and A]D] take points K and L such that I AIK 1 = 
f AILI = x, from K and L drop perpendiculars on the 
diagonal A C]; since the cube is symmetric with respect 
to the plane A CC]A], these perpendiculars will pass 
through one point M on the diagonal ACI , Let x be chosen 

./"'-
so that KML = a. Then, after rotating about the diago-
nal A C~ antic10ckwise (when viewed in the direction from 
A to C 1J through an angle a, the point K will move into L. 
On the edges BtA t and BIB take points P and Q at. th~ 
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same distance x from the vertex B 1• After the same rota­
tion the point Q will move into P. Consequently, after 
the rotation the face ABBIAI will pass through the points 
A, L, and P and will cut off our cube a pyramid AAIPL 

whose volume is equal to ! ax (a - x). The same reason­

ing is true for all the faces. Thus, the volume of the 
common part is equal to a3 - ax (a - x). It now remains 

/'-... 
to find x from the condition KML = a. To this end, 
ioin M to the midpoint of the line segment LK, point R. 
We have 

I 1'2 a ..,r- 1'2 MR I = x- cot -, I CIR I = ay 2 - x-, 
222 

the similarity of the 
find x = 2a 

..,r- a 
1 + y 3 cot 2 

Thus, the volume of the common part is equal to 

140. Let A be some point on the ray, B the point of in­
cidence of the rayon the mirror, K and L the projections 
of A on the given mirror and rotated mirror, Al and A. 
the points symmetric to A with respect to these mirrors, 
respectively. The sought-for angle is equal to the 

/"... 
angle AlBA •• If I AB I = a, then I AlB I = I A.B I = a, 

/'-... 
I A K I = a sin a. Since KA L = ~, we ha ve I K L I = 
I A K I sin ~ = a sin a sin~, I AlAI I = 2 I KL I = 
2a sin a sin ~. Thus, if cp is the desired angle, then 

sin f = sin a sin ~. 
Answer: 2 arcsin (sin a sin ~). 
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141. Fix the triangle ABC, then known in the triangle 
/'..­

ADC are two sides I A C I and I DC I and the angle ADC = 
a. In the plane of the triangle ADC construct a circle 
of radius I AC I centred~at C (Fig. 25, a). If a~ 60°, 

4t-----... C 

(a) 

Fig. 25 

/ 
/ 

/ 

Lf~_ - ~----==---~8 

then there exists only one triangle having the given 
sides and angle (the second point AJ. will turn out to lie 
on the other side of the point D); this is a triangle con ... 
gruent to the triangle ABC. In this case A C and BD are 
mutually perpendicular. 

And if a < 60°, then there is another possibility (in 
Fig. 25, 4, this is the triangle A1DC). In this triangle 
/"... a ~ ° 3a 
CAID = 90° + -, A1CD = 90 - -. But in this case 

2 2 
./"'-.. 

the vertex C (Fig. 25, b) is common for the angles BCA1 = 
,/"-..,/"-.. 3 

90° -~, BCD = a, A1CD = 90° -~, and since 90°-
2 2 

~= (90° - 3;) + a, the points Alt B, C, and D lie in 

the same plane, and the angle between AIC and BD will 
he equal to a. 

Answer: if a> 60°, then the angle between AC and BD 
is equal to 900, if a < 60°, then the angle between A C and 
BD can be equal to either 90° or a. 
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f42. Let the base of the prism be the polygon AIA,- _ . 
• • • A n, 0 the centre of the circle circumscribed aDout it. 
Let then a certain plane cut the edges of the prism at 
points B I , B 2 , ••• , Bn , and M be a point in:i.the plane 
such that the line AIO is perpendicular to the plane of 
the base of the prism. Then the following equalities hold; 

n 

~ IAkBkl=nIMOI, 
k=l 

V=SIMOI, 

(f) 

(2) 

where V is the volume of the part of the prism enclosed 
between the ~ base and the passed plane. 

Prove. ,Equality (f). For an even n it is obvious. 
Let n be odd. Consider the triangle A~Ak+IA I' where A 1 
is the vertex most distant from Ak and Ak+l. Let Ck and 
Ck be the midpoints of AkAk+l and BkBk+l' respectively. 

Then 1 CkO 1 = cos n = A. Now, it is easy to prove 
1 OAl 1 n 

that 
, 

1 MO 1 = 1 CkCk 1 + IAzBdA 
f+A 

f 2" (I AkBk 1 + 1 Ak+lBk+l 1)+ 1 ALB, 1 A 

f+A 
Adding these equalities for all k's (for k = n instead of 
n + f take f), we get Statement (f). 

To prove Equality (2), consider the polyhedron 
AkAk+lOBkBk+;M. If now Vk is the volume of this poly­
hedron, then, by Simpson's formula, we have (see Prob­
lem f5) 

Vk= bn ( 1 AkBk 1 + 1 Ak+lBk+1 1 an 
6 2 

+4 1 AkBk 1+ 1 Ak+IBk+1 1 +2 1 MO I. an) 
4 2 

= anbn (I AkBk 1 + IAk+IBk+1 1 + 1 MO I) 

= :~ (lAkBkl+IAk+lBk+ll+lMOD, 
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? 
where tln' bn are the side~ and the slant height of the 
polygon AlA, . • . An - Add~ these equalities for all K's 
and taking (1) into consIderation, we get Equali­
ty (2). 

Now, it is not difJieult to conclude that the answer to 
our problem will be the quantity nJ. 

143. Let the pentagon ABCD E be the projection of the 
regular pentagon, where I AB I = 1, I BC I :::::::: 2, I CD 1= 
4, ABCD is a trapezoid in which I AD I = '- = 1 + V5, 

I BC I 2 
F the point of intersection of its diagonals, A FDE is 

E 

A~------~--~~D 

Fig. 26 

a parallelogram. Draw CK parallel to AB (Fig. 26). In 
the triangle CKD we have: I CK I = 1, I KD I = 2( '- -

- ............... 
i), I CD I -= a. Set CDK = cpo Write the theorem of 
cosines for the triangles CKD anll ACD: 

i = 4' + 4 ('- - i)' - 4 ('- - 1) a cos cp, 
I AC I' = 4' + U' - 4a1eos cp. 

From these two relationships we ftnd 

.. / 4)..'- 3'--4' 
I AC I == V '--1 ' 

'- .. / 4).'-3'--4' 
IEDI=IAFI= 1+1 JI '--I · 
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~imilarly, we find 
" 

, 

'" 11 / a2Jv-f+4}.,2_4}" 
I AE I = I F D I = }., + f V }., _ f • 

J • 
f \ ~ " • 

Answer: Two other sides are equal to 
~, ' 

V5~1 Y 14~10V5-'2 (YS+f) a2 

and I -

The problem has a solution fer V5- 2 < a <1/5. 
144. Let the edge of the cube be equal to a, I Nel J = 

z. Find " 
a x 

I LM I = 2' INK I = .. r- , 
. . y 2 . 

• \ 2 

I LN 12=,t LBI 12,+ I BIN 12=-;-+ (a-x)2 

, 5 2 2 + 2 =4a-ax x, 

_I LX 12=-1 LBI 12+ I BJ,K 12 
= I LBI I2+ {BIN 12+1 NK 12 

. V2 
+21 BIN lol,NK 12 

a2 x2 . 
=T+(a.-x)2+ T +(a-x) x 

. 5 2 
2 +3; . ;:::4 a -ax 2' 

I MN 12= I MBI 12+ I BIN 12= 3;2 -2ax+x2, 

I MK 12= 1MB 12+ I BK 12_1 MB I . I BK I 
3a2 3 x 2 

=2-2 ax+T· 

9-0·",9 
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,/"--.. ~ ( 

If LM K = M KN = q>, then by the theorem of cosines, 
for the triangles LM K and M KN we get: 

I LK I' = I LM II + I MK II - 2 ILM I- IMK I cos CPt 
I MN I' = IMK II + I KN II - 2 IMK 1·1 KNI cos cpo 

Eliminating cos cp from these equations, we get 

I LK II - IKNI - I MN 11 .1 LM I 
=(1 LM I - I KN I) (I LM I· IKN I - I MK I'). 

Expressing the line segments entering this equality 
with the aid of the found formulas, we get 

( Sa' _ ax + x2 ) --=--_ ( 3a2 _ 2a:l: +:1:1) ~ 
4 2 1'2 2 2 

_ (.!!:..._-=-) ( ax _ 3a' + 3a:l: _ :1:1 ) , 
- 2 V2 2 V2 2 2 2· 

From this equation we find :I: = a (f _ ~2 ) . 
I BIN I .. r-

Answer: I Nel I = Y 2+1.. 
t4S. Two cases are possible: (f) the centre of the circum ... 

scribed sphere coincides with the centre of the base and (2) 
the centre of the circumscribed sphere is found at the 
point of the surface of the inscribed sphere diametrically 
opposite to the centre of the base. 

In the second case, denoting by Rand r the radii of 
the respective inscribed and circumscribed spheres, find 
the altitude of the pyramid 2r + R and the side of the 
base 1'RI - 4r2. The section passin¥ through the altitude 
and midpoint of the side of the base IS an isosceles triangle 
with altitude R + 2r, base 1'3 (R2 - 4r2) and radius of 
the inscribed circle equal to r. Proceeding from this, it 
is possible to get the relationship 3R2 - 6Rr - 4r2 = 0 
for Rand r. 

Answer: 3 + 1'21 (in both cases). 
3 
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146. Two cases are possihle: (1.) the centre of the 
circumscribed ball coincides with the centre of the base, 
(2) the centre of the circumscribed sphere is found at the 
point of the surface of the inscribed ball diametrically 
opposite to the centre of the base. In the first case, the 
plane angle at the vertex is equal to n/2. 

Consider the second case. Denote by a, b, and 1 the 
side of the base, lateral edge, and the slant height of the 
lateral face, respectively. Then 

2 

b2 = 12 + a4 ' (1.) 

the radius r of the inscribed ball is equal to the radius 
of the circle inscribed in the isosceles triangle with base a 
and la teral si de 1: 

a Y21-a 
r= 2 Y21+a' 

(2) 

the .l'adius R of the circumscribed ball is ~ual to the 
radius of the circle circumscribed about the isosceles 
triangle with base a Y2 and lateral side b: 

R = --.!!.2 y2 . (3) 
2 y2b2-a2 

Here, the centre of the circle must lif' inside the triangle, 
which means that b > a. Since the distance from the 
centre of the circumscribed ball to the base is 27, we ha ve 

2 
R2 - ~ = 472 • Substituting the values of Rand r ex-

pressed by Formulas (2) and (3) into this equality, we 
get after Simplification; 

(bZ_a2)2 

2 (2b I -a2) 

a2 (21-a) 
21+a 

Expressing b in terms of a and 1 by Formula (1.), 
we get 

( 12- 3:2 
) ~= a Z (21-a)z. 

9* 
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'Taking into account that b > a or l > a V3;we obtain 
- 2 

that 4 and l satisfy the equation 

whence + = f+ ~3 (for~the second root + < ~3) . 
n n 

~srper~ '"2 or 6 a 

, 147. Let K be the projection of the vertex -Son the 
plane ABCD, and let L, M, N, and P be the projection 
of S on the respective sides AB, BC, CD, and DA. 

It follows from the hypothesis that LSN and MSP are 
right triangles with right angles at the vertex S. Conse­
quently, ILK 1.·1 KN I = I Ml{ I-I KP I = I KS 12 , And 

B..._......,...---_ 

l 

(a) 

Fig: 27 

since I LK I + I KN I - I MK I + I KP I = a, two 
cases are possible; either I LK I = I KM I, 1 KP I = 
IIKN I, or I LK 1 = I KP I, I M K I = I KN I, that is, 
the point K lies either on the diagonal AC or BD. Con .. 
sider both cases, 

(f) K lies on the diagonal BD (Fig. 27, a). The figt.ll'e 
represents the projection of the pyramid on the plane 
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ABCD. The pOint S is found "above" K: Setting ILKI = 
I KM I = x, we now find: 

I KS I = V I LK I . I KN I = V x (a-x), 

I SL 1= VI LK 12 + I KS It=Vax, 
a Vax 

SABS= 2 • 

a Va (a-x) 
Analogously, SADS= 2 • Further, V ABDS= 

i all V x (a-x)o On the other hand, by the formula 

of Problem ii, we have 

V 2 SABsSBDssina 
ABDS=T I AK I 

a3 V x (a-x) sin a 

Equating two expressions for V ABDS, we get 
xl - ax + all cost a = 0, 
whence x (a - x) = at cost a, 

a3 t cos a I 
V ABCDS = 3 0 

The problem has a solution if I cos a I ~ ;. Besides, the 

angle at the edge AS is obtuse, since the plane ASM 
is perpendicular to the face ASD, and this plane"passes 
inside the dihedral angle between the planes A SB and 
ASD. Consequently, in the first case the problem has 

I · Of n 2n a so utlOn 1 - < a ~ -. , 2 3 
(2) The point K lies on the diagonal AC (Fig. 27, b). 

Reasoning as in Case (1), we get (as before, I LK I = z): 

V all Vx(a-x) a3 x sin a 
-, ABDS= 6 == .6 V ~ (x+x) , 
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whence we easily find x = a 1 cos ai, 

Y _ a3 V 1 cos a 1(1-1 cos a I) 
- 6 • 

The same as in the first case, a >~. Thus, we get the 
2 

answer. 

Answer: if ~ < a ~ 2; , two answers are possible: 
. 

y __ a3 eosa y _ a3 V-eosa(f+cosa) 
1- 6' 2- 6 

'f 2n y_ as V-cos a (1 +cos a) 
1 a>3' - 6 • 

t48. Let us first solve the following problem. In the 
triangle ABC points Land K are taken on the sides AB 

and AC so that 1 AL 1 = m 1 A'K 1= n. What is the 
1 LB 1 'I KC I 

ratio in which the median A M is divided by the line KL? 
Denote by N the point of intersection of KL and AM; 

Q is the point of intersection of KL and BC, P is the 
point of intersection of KL and the straight line parallel 
to B C and passing through A. Let 1 B C I = 2a, 1 QC 1 = 
b, rAP 1 = c. n > m. Then, from the similarity of the 
corresponding triangles we shall have: .!:. = n, c 

b b + 2a 
nl, whence 1 AN I = c _ 2mn . 

INMI b+a m+n 
Let now m, n, and p be the ratios in which the edges 

AB, AC, and AD are divided by the plane. To determine 
them, we shall have the following system: 

, 
2mn =:2 
m+n ' 

2np 1 
n+p==T' 

2pm ==4 
p+m ' 

whence 
-444 

m=-S' n= 9' p='f. 
The fact that -1 < m < 0 means that the pOint L lies 
OIl the extensiOD of AB beyond the point A, that is, our 
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plane intersects the edges AC, AD, BC, and BD. Further, 
determining the ratios in which the edges BC and BD are 
divided (we shallget!and~),wefind .. theanswer: 7123 . 

7 9 16,901 
1.49. Consider the pyramid SABC (Fig. 28) in which 

./".. 2n A' d" 1 h I CA I = I AB I, BAC=-, S Isperpen lcuarto t e n 
plane ABC, and such that the vertex A is projected on 

8 

Fig .. 28 

the plane SBC into the point 0 which is the centre of the 
eircle inscribed in SBC. 

Let us inscribe a cone in this ~yramid so that its 
vertex coincides with A, and the circle of its base is rep­
resented by the circle inscribed in SBC. It is obvious 
that if we take n such pyramids whose bases lie in the 
plane ABC so that their bases congruent to the triangle 
ABC form a regular n-gon with centre at A, then the 
eones inscribed in these pyramids form the desired system 
of cones. 

Further, let D (be the midpoint of BC, I OD I =r, 
It n t AD f = I. Then J SD I ;;;:;: -, I BD I = l tan - • Since 
r n 

.I, /' /' I S D I l 
SBD =:::J 20BD, tan SBD = I BD I n 

rtan­
n 
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/'\ r 
tan 0 BD = n' we may w rite the equation 

l 

l tan-
n 

r 2----
n 

l tan­
n 

---~2~-' n r 
r tan - 1-----

n l2 tan2~ 
n 

n 
tan -

r n 
whence T = --;:-::=====-

V1+2tan2 : 
n 

tan -
Answer: 2 arcsin n. 

',I 

, ... ; 

~ 

I 
I' 

n f+2 tan!-
n ' 

150. Let the'"'plane A KN touch the-ball at. the point p, 
and the straight line AP intersect NK at the point M 

/ 
/ 

~!!5:E:;::::::Jr;l8f 

I 
I 
~-

1.1 

Fig. 29 

... ! I 

, . 
; 

r .. \ .. ~ 

(Fig. 29)'. Then the plane .. C1NA is the biseetor J)lane-,of 
the dihedral angle fonned by the planes D~ C).A: anil C;MA 
(the planes D1AN and AN M touch the .ball; and ine 
planes D.,C.,A and C.MA pass through its centre). In the 
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same way, the plane CI KA is the bisector plane of the 
dihedral angle formed by the planes MCIA and CIBIA. 
Thus, the dihedral angle between the planes A CI K and 
A CIN is one-half the dihedral angle between the planes 
ADICI and ABICI equal to 2n/3. 

Answer:, n/3. 
15f. Let K, L, and M be the mldpoints of the edges 

AB, A C, and AD (Fig. 30). From the conditions of the 

A 

D 

o 

Fig. 30-

probl(p it then follows that'the tetrahedron AIBI..GIDI 
is bounded bY. the planes DKAf' BLAI , CMAJ, and the 
pJanQ passing through A paralle to BCD. And the vertices 
BI , CI , and DI are arranged so that the points M, K, 
a,nd L are th.e midpoints of CBlt DCI , and IJDI (the 
pOints BI , CI , an~ DI are not shown in the figure)" 

Let now Q be the midpaint of BC, P th.e pOint of 
intersection of BLand KQ. To find the v~lume of the 
common part of two pyramids ABCD and AIBICIDI , we 
must from the volume V of the~])yramid ABCD subtract 
the volumes of three pyramids equivalent to DKBQ (each. 

f -
of them has the volume e~ual to -4 V) •• and ad~ the vol-

umes of fihree pyramids equivalent to-AtBQP. The volUme 
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of the last pyramid is equal to 2f4 V. Thus, the volume 

of the common part is equal to ~ V. 

152. Let uS first prove that the dihedral angles at the 
edges DB and A C are equal to n/2 (each). Let I A D I = 
I CDI = I BC I = a, I BD I = lAC I = tJ, I AB I = c, 

A 

o 
(a) (11) c 

Fig. 3f 
b> a. From D and C drop perpendiculars D K and CL on 
the edge AB (Fig. 3f, a). Let us introduce the following 
notation: 

I A K I =:: I B L I = x, I K L I = I c - 2x I, I D KI :=t 

I CL 1= h. 

Since the dihedral angle at the edge AB is equal to 
n/3, we have I DC I" = f D K 12 + I CL J 2 - I D K I X 
1 CL I + I KL Fa, that Is, as = h2 + (c-2X)I. Replac­
ing h'Z by at - Xl, we get 3x" - 4cx + c-'Z = 0, wlience 
x = c13, x = c. From the condition b > a it follows 
tkt x < c/~, hence x = ciS. Thus, the quantities a, b, 
and c are related as follows: c2 = 3 (b2 - a2). 

Find the areas of the triangles ABD and A CD: 

1 ... / c· f /' 4a' - b' SABD==SABC=T c Y aJ-g=T c V 3 ~ 

SACD=:=SBDC= ! b Y4aJ -bl • 
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Expressing the volume of the tetrahedron ABCD by 
the formula of Problem 11 in terms of the dihedral angle 
at the edge AB and the areas of the faces ABD and ABC. 
and then in terms of q> the dihedral angle at the edge AC 
(it is also equal to the angle at the edge BD) and the 
areas of the faces ABC and ACD, we get 

v _ 1 SABDSABC V3 1 SACDSABC . 
ABCD -"'3 I AB I · -2-=3 I AC I SIn q>, 

whence 

sin q>= SABD I AC I. V3 
SACD I AB I 2 

.. i4a2-b2 

2c V 3 b Va 
-- b V4a2-b2 0-;-. -2-= 1. 

n 
Hence, q> = 2 . 
To determine the sum of the remaining three dihedral 

angles, consider the prism BCDMNA (Fig. 31, b). The 
tetrahedron ABCN is congruent to the tetrahedron 
AB CD, since the plane AB C is perpendicular to the plane 
of ADCN, but ADCN is a rhombus, consequently, the 
tetrahedra ABCD and ABCN are symmetric with respect 
to the plane B CA. Just in the same way the tetrahedron 
ABMN is symmetric to the tetrahedron ABCN with re­
spect to the plane ABN (the angle at the edge BN in the 
tetrahedron AB CN is congruent to the an fIe at the edge 
BD of the tetrahedron ABCD, that is, equa to n/2), conse­
quently, the tetrahedron AB M N is congruent to the 
tetrahedron ABCN and is congruent to the original 
tetrahedron ABCD. 

The dihedral angles of the prism at the ed~s CN and 
B M are respectively congruent to the dihedral angles at 
the edges DC and BC of the tetrahedron ABCD. And 
since the sum of the dihedral angles at the lateral ed~s 
of the triangular prism is equal to n, the sum of the dihed­
ral angles at the edges AD, DC, and CB of the tetrahed­
ron ABCD is also equal to n, and the sum of all the 
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dihedral angles of the tetrahedron excluding the given 
angle at the edge AB is equal to 2n. 

f53. Let in the triangle ABC t~e sides BC, CA, and 
AB be respectively e~l to a, b, and c. Since the pyramids 
ABCCI , ABBICI , and AA BICI are congruent, it follows 
that each of tliem has two laces congruent to the triangle 
ABC. Indeed, if each pyramid had only one such face, 
then between the vertices of the pyramids ABCCI and 
AIBICIA there would be the correspondence A ~ AI' 

1_--b--:1I 

(a) 0 

Fig. 32 

CA c 

8 
(e) 

c 

B-+ BIt C-+ CIt C1 -+ A, that is, I CCI I = lAC 11, 
I BCI I" = I BIA I, and this would mean that none of the 
faces in the pyramid ABCIB1 is equal to the triangle ABC . 
Now, it is easy to conclude that the lateral edge of the 
prism is equal to a, or b, or c (if, for instance, the 
triangle A CIB is congruent to the triangle ABC, then 
the face AlBIA in the pyramid A IB1CIA corresponds 
to the face ACIB of the pyramid ABCCI and the tri­
angle AlBIA is congruent to the triangle ABC). 
" Consider all possible cases .... 
, (1) I AAJ I = I BBI I = I CCI I = a (Fig. 32., II). 
Then from the vertex C of the pyramid ABC~ two edges 
of length a and one edge of length b emanate, and an edge 
of length c lies opposite the edge CCI' Hence it follows 
that to the vertex C of the pyramid ABCCI there must 
correspond the vertex CI of the pyramid AIBIC]A and 
t A C1 I = a. Now it is possible to conclude that I ABI I = 
I BCI I = b. . 

In all the three pyramids, the dihedral angles at the 
-edges of length b are congruent, the sum of two such 
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angles being equal to n (for instance, two angles at the 
edge CIB in the pyramids ABCCI and ABBICI ), that is, 
each of them is equal to n/2. 

Draw perpendiculars BL and CIK to the edge AC 
(Fig. 32, b). Since the dihedral angIe at the edge AC is 
equal to 900 , we have 

b' = I CIB I' = I CIK 12 + I KL I' + I LB 12 
= I CIC 12 - I KC 12 + (I KC I - I LC 1)2 + IBCI 2 

-I LC 12 == 2a2 - bx, 

where x == I LC I, and is found from the equation 
a2 +b2 _c2 

aZ-x'==c2-{b-x)2, x= 2b • 

Thus, 3a2 - 3b2 + c2 = O. But, by the hypothesis, 
AB C is a right triangle. This is possible only under the 
condition c2 = a2 + b2. Consequently, b == aV2, c == 
ava. 

Now, it is possible to find the dihedral angle at the 
./'---. 

edge BC of our prlsm. ACCI == 'It/4 is the linear angle of 
this dihedral angle (ABC and CICB are right triangles 
with right angles at the vertex C). The dihedral angle 
at the edge AB of the pyramld ABCCI is equal to 'It/3. 
Let us show this. Let this angle b(l! equal to q>. Then the 
dihedral angle at the edge AB of the prism ABCA]BICI is 
equal to 2q>, and at the edge AIBI to q>. Thus, 

'It 
3q> == 'It, q> == 3" . 

(2) I AAI I == I BBI I == I CCI I == b (Flg. 32, c). In 
this case, in the pyramid ABCCI two edges of length b 
and one edge of length a emana te from the vertex C. 
Hence, the pyramid AIBICIA has also such a vertex. It can 
be either the vertex A or CI • In both cases we get I ABII = 
a, I A CI I == b (we remind here that two faces with sides 
a, b, and c must be found). Thus, each of the pyramid~ 
ABCC and AlB CIA has one face representing a regular 
triangle with side b, while the pyramid ABB I C1. has not 
such a face whatever the length of the edge B CI is. Thus, 
this case is impossible. . 
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(3) I AAI I = I BBI I == I CCI I == c. This case actu­
ally coincides with tlie first, oIily the bases ABC and 
AIBICI are interchanged. 

n n ( 3n) n ( 2n) 
Answer; 2' T or 4 ' 3" or 3 · 

154. Drop perpendiculars AIM and BIM on CD, BIN 
and CIN on AD, CIK and DIK on AB, DIL and AIL 
on CB. 

Since 

I AIM I I BIN I I CIK.I I DIL I 1 
I BIM 1=1 NCI 1=1 KDII-I AIL I "'3 

(these ratios are equal to the cosine of the dihedral angle 
at the edges of the tetrahedron) and IAIBII = IBICII = 

Fig. 33 

I U1ADI 1 = I DIAl I, the following equalities must be 
f lIed: I ~IM I == I BIN I = I CIK I = I DI L I = x, 
I BIM I = I N C..1 I = I KDI I = I AIL I = 3x (Fig. 33 
represents the development of the tetrahedron). Each of 
the edges CD, DA, AB, and BC will turn out to be di-
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vided into line segments m and n as is shown in the figure. 

Bearing in mind that m + n = a, we find z = a ~3 , 
5a 7a 

m = i2 ' n = i2 ,and then find the volume of the tetra-
hedron A1B1C1D1• 

as V2 
Answer: i62 • 
i55. Without loss of generality, we will regard that 

all the elements of the cone tangent to the balls are in 

Fig. 34 

contact simultaneously with two balls: inner and outer. 
Let us pass a section through the vertex S of the cone 
and the centres of the two balls touching one element 
(Fig. 34, the notation is clear from the figure). From the 
condition that n balls of radius R touch one another there 

follows the equality I OA I = R ,analogously, 
. n 

SID­
n 

2R R 
I OB I = . Consequently I AB I = a = --

. n . n 
sln - Sffi-n n 

R 2R 
Let I AC I = z. Then tan a = -, cot a = . Mul-z a-z 
tiplying these equalities, we get the equation for z: 

zI - az + 2R2 = 0, 
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, a~ V' a2 -8Rio 
XI = -.-...;....--:::----

. 2 
whence 

'" ' 

~here a= __ R_ 
- . n-. '.' 

sIn­
n 

The condition a2-SR2 ~ 0 yield~ the Jnequafity 

sin ~ ~ ~r-' Besides, there must be fulfilled the in-
n 2 r".2 ". 

~quaiity tan"d= ~ <::1.' Now, it is not difflculi <!to Qb,... z ~i.'l.1o. ~ ~ l 

. h h fi'f f . n f L" taln t at t e root XI ts 1 -3 < SIn - ~ .. r-" .. ~r 
n 2 y 2 • 

tb 't' t " t" . n __ f . e root X2 1 remains one les fIC Ion: SIn - ~ .. r-. 
n 2 y 2' 

I · "bl ha 1 . n f I t IS POSSI e ~o prove t t 3 < sin Ii" ~ 2 V 2" on y 

for n == 9. , 

The volume of the c~ne will be equal to {- n (a + 
X)3 tan 2a. Expressing at X t and tan 2a in terms of Rand 
n by the appropriate formulas, we get the answer. ' 

Answer: 

:- nij' (3+' :If'':'''8SiDI~)'3 (,f+" /f-ssin1~) I 

V _ V " ~) n Y . n 
1 ............ \ I t 

I f2 8in~.!!. ./ f':'- 6 sinl "'::'+ .. /'f- S sin2"::'), . . n\ !' V, n 

Besides t for n =~ one more value is possible: 

-nR3 (3--Y {'-:'Ssin2 T) 3 ('f- Y.f-S.stn1 f) 
,f2 sin1..:!.. (i - 6 sin1 ..::. _ .. / f - S sin2 ..:!.. ) 

, 9 ,9 V 9 

• 

, 156. Projecting the cube on the plane perpendicular to 
BID, we get a regular hexagon ABCCIDIA1 (Fig. 35) wU,h 
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side V~ a= b, where a is the edge of the cube (the regu­

lar triangle BCLAI will be projected into a con~~ent 
triangle, since the plane of BCIAI is perpendic :1' \0 

l\ 
Fig·i35 

lH 

B",D). Consider the triangle KACI , where I KA t == 
IACII =2b, the line NM passes through the midpoint of 

I AM I 
ACI · Let I AAI I = x. We then draw CIL parallel to 
MN. We have: 

I,ML I = lAM I, 
I KN I I KM I 
I KCI 1- IKL I 

whence 

I· BN I 2 (t KN I -I BC I) 
I BCI I I KCI I 

IKN I 2+x 1 
=2 1 lCI 1-1= l1+x -1= 1+x • 

10-0"9 
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Thus, 

I BCII 
IBN I 

Problems in Solid Geometry 

IAMI 
I AAII =f+x-x=1. 

157. If two noncongruent and similar triangles have 
two equal sides, then it is easy to make sure that the 
sides of each of them form a geometric progression, and 
the sides of one of them may be designated by a, 1.a, 1.2Ia 
and those of the other by A,a, A,8a, A,3a. 

Further, if the sides of a triangle form a geometric 
progression and two of them are equal to 3 and 5, then 
the third side will be equal to y- f5 (in other cases the 
sum of two sides will.be less than the third one). Now, it 
is easy to prove that in our tetrahedron two faces are 
triangles with sides 3, V 15, 5 and two other faces have 

sides -V 15, 5, 5 v~ or 3 vi, 3, V 15; accord-

55 V6 ff -
ingly the probl~m has two answers: 18 and 10 -V fO. 

158. Introduce a rectangular coordinate system so that 
the first line coincides with the z-axis, the second line is 
parallel to the It-Uis and passes through the point 
(0, 0, a), and the third line is parallel to tho I-axis and 
passes through the point (~t a, 0). Let ABCDA1B1CID1 be 
a parallelepiped in which toe points A and C ie on the 
first line and have the coordinates (Xl' 0, 0), (X2I' 0, 0), 
res~ctively, the points Band CIon tile second line, their 
coordinates are (0, Ih .. , a) and (0, Ya' a), and the points D 
and Bl on the third line, their respective coordinates are 
(a, a, .11) and (a, a, .IS>. From the condition of the equality 

~ ~ ~ 

of the vectors AD = BC = BICI, we get a - XI = X2I = 
-a, a = - YI = U2I - a, .II = - a = a - .121 , whence 
Xl = 2a, X2I = -- a, YJ = - a, Y2I = 2a, .II = - a, '- = 
2a. Thus, we have A (2a, 0, 0), B (0, -a, a), C (-a, 0, 0), 
D (a, a, -a), BI (a, a, 2a), CI (0, 2tt, a). It is possible 

~ ~ 

to check that AB = DC. Further, I A C I = 3a, I AB I = 
ttl's, I BC I = aVa, that is, ABC is a right triangle, 
hence, the area of ABCD will be lAB I· fBCI = 3azY2. 
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The equation of the plane ABCD is y + z = 0, hence, 

the distance from Bl to this plane will be equal to :; . 

Answer: 9as. 
i59. Consider the regular pyramid ABCDS in which 

the section KLMNP is drawn representing a regular pen-

S 

A 

Fig. 36 

tagon with side a (Fig. 36). Let the diagonal of the base 
of the pyramid be equal to b, and its lateral edge to l. Let 
uS also set I SM I = xl, I SN I = yl. Since the pentagon 
KLMN P is regular, we have 

n i+V5 I LM I =2a cosT= 2 a=fla, 

IMFI 
I FG I 

2n 
i-cos - ... r-5 r 5-i 

n 2n = 2 =A. 
cos 5 +cosT 

b-a 
We have: I KP I = a, I GO I = 2 . On the other hand, 

SM b I MC I 
I OE I = I OC I sc =2 x, I ME I = I SO I I sc I 
10* 
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h (i-x), I FO I =h (i-g), where h is the altitude of 
the pyramid, consequen tty 1 

I GO 1 IOE 1 (1-y) xb 
1 FO 1- I ME 1- I FO I ' I GO I = 2 (y-x) • 

Equating the found expressions for I GO I, we get the 
equation 

(1-g)xb =b-a. (1) 
g-x 

Further 

IOE I I MFI 
\ GO \ = \FG \ =A, 

whence ; 

g-x 
1 =A. (2) 
-g 

Since I LN I = ~a, I LN I = 1/1 DB I, we have 
gb = p.a. (3) 

And, finally, consider the triangle PNB in which I PN I = 
b-a .. ;- /'-... 

a, I NB 1= (i-g) I, I PB 1= 2 y 2, cos PBN = 

/"'-.. b 
cos ABS =-~ 

2 Y21-
By the theorem of cosines, we get 

at =(1_g)2 I' + (b-;a)t _ (i-g) ~-a) b • (4) 

Taking into consideration that ,It = V52+ 1 ,A = 
YS-1 V5-1 '""---::2=--- , from Equations (1)-(3) we find g = 2 ' 

b = V5i3 a, then from Equation (4) we get 

II at (7 +3 V5) bt 

4 -"'2-
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Thus, the volume of the pyramid is equal to 

.!...~ -. /ll-~-~- (9+41'5) I 
3 2 V 4 - 12 - 12 a • 

160. We introduce the usual notation: a, b, c denote 
the sides of the given triangle, ha' hb' hc its altitudes, 
p one half of its perimeter, r the radius of the inscribed 
circle. Let M denote the point of intersection of the 
planes AlBIC, AIBCI , and ABICI , 0a' Ob' Oc the cen­
tres of the externally inscribed circles (Oa is tlie centre of 
the circle touching the side BC and the extensions of AB 
and AC, and so on). Prove that Oa01J.OcM i~ the desired 
pyramid, the altitude dropped from the point M passing 
through the centre of the inscribed circle (0), and I MO I = 
2r. 

Consider, for instance, the plane AIB)C. Let K be the 
point of intersection of this plane with the line AB, 

I KA I_I AAII 
I KB I I BBtI 

ha b I AC I 
hb =a= IBC I' 

that is, K is the point of intersection of the line AB and 
the bisector of the exterior angle C. Hence it follows that 
tbe base of our pyramid is indeed the triangle 0aObOc and 
that the point M is projected into the point O. Find I MO I: 

I MO I IrOOa 1_ ra- r 
ha I AOa 1- ra ' 

where ra is the radius of the externally inscribed circle 
S S 2S 

centred at Oa: ra = , r = -, ha = - , conse-
p - a p a 

quently, 
1 1 --

I MOI=ha 
_2_S p-a p ~ 2S =2r. 
a 1 p 

p-a 

Find the area of the triangle 0aObOc. Note that OaA , 
'JI)B, 0eC are the altitudes of this triangle. The angles of 
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the triangle OaObOe are found readily, for instance, 

Other angles are found in a similar way. The circle with 
diameter ObOe passes through Band C, Gonsequently, 

a 
... , 

• A 
sin 2 

c 
exactly in the same way I ObOa 1=--... -, hence 

I~ /".. c 
\ OuA \ =-\ OaOb \ sin OaObA = ... 

C 
sin 2 

• C 
slnT 

B 
cos 2. 

Thus, the area of the triangle OaObOe (let us denote it 
by Q) will be 

... 
ac sin B 

4 • 
1 

... ... ... 
• A . B • C 

sln2smTsmT 

(1) 
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A 

F o d ° A In sin 2 : 

. A _ ... / f-cosA _ -. / ~ (f- b2+c2_a2 ) 
Sln 2 - V 2 - V 2 2bc 

_ Vr (p-b) (p-c) 
- be· 

A A 

i5t 

Then sin ~ and sin ~ are found in the same way. 

Substitutin~ them in (f), we get 

Q-S abc 
- 2 (p-a) (p-b) (p- c) , 

and the volume of the pyramid MOaObOc will be 

V = Sabcr ~ abc=i.. SR 
3 (p- a) (p-b) (p- c) 3 3· 

Section 2 
161. No, not in any. 
162. The indicated property is possessed by a pyramid 

in which two opposite dihedral angles are obtuse. 
163. Prove that if the straight line is not perpendicu­

lar to the plane and forms equal angles wi th two inter­
secting lines in this plane, then the projection of this 
line on the plane also makes equal angles with the same 
lines, that is, it is parallel to the bisector of either of 
the two angles made by them. 

1M. A triangle, a quadrilateral, and a hexagon. 
A cube cannot be cut in a regular pentagon, since in a sec­
tion having more than three sides there is at least one 
pair of parallel sides, but a regular pentagon has no 
parallel sideso 

165. On the edges of the trihedral angle layoff equal 
line seEIIlents SA, SB, and SC from the vertex S. Denote 
by ° the projection of S on the plane ABC. ASB and AOB 
are isosceles triangles with a common base AB, the lat-
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eral sides of the triangle AOB being shorter than those of 
/""'- /"-. 

the triangle ASB. Consequently, AOB > ASB. Similar 
inequalities hold for other angles. Thus, 

/""'- /, /""'- /'-.. /'''-, /, 
ASB + BSC + CSA < AOB + BOC + COA~ 2n. 

(The last sum is equal to 2n if 0 is inside the triangle 
A BC and is less than 2n if 0 lies outside of this trian­
gle.) 

To prove the second statement, take an arbitrary point 
inside the given angle and from this point drop perpen­
diculars on the faces of the given angle. These perpendicu­
lars will represent the edges of another trihedral angle. 
(The obtained angle is called complementary to the given 
trihedral angle. This tochnique is a standard method in 
the geometry of trihedral angles.) The dihedral angles of 
the given trihedral angle are complemented to n by the 
plane angles of the complementary trihedral angle, and 
vice versa. If a, B, y are the dihedral angles of the given 
trihedral angle, ihen, using the above-proved inequality 
for plane angles, we shall have (n - a) + (n - ~) + 
(n --: ,\,) < 2n, whence it follows that a + ~ + y > n. 

166. (1) Let S be the vertex of the angle, M a point 
on an ed~, Ml and M2 the projections of M on two other 
edges, N the projection of M on the opposite face. Suppose 
that the edge SM corresponds to the dihedral angle C. 
If I SM I = a, then, finding successively I SM. I and 
then from the triangle MM1N, I MN I, or in a different 
way, first I SM2 1, and then from the triangle MM 2N, 
I M N I, we arrive at the equality 

I M N I = a sin a sin B = a sin ~ sin A, 

that is, 

sin a sin ~ 
sin A sin B • 

(2) Denote by a, b, and c the unit vectors directed 
along the edges of the trihedral angle (a lies opposite the 
plane angle of size a, b o~posite ~, c opposite y). The 
vector b can be represented m the form: b = a cos y + 1], 
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where I '1 I = sin y~ '1 is a vector perpendicular to a; 
analogously~ c = a cos ~ + 6 where I ~ I = sin~, ~ is 
perpendicular to a. The angle betwpen the vectors 11 and S 
is equal to A. 

Multiplying b and c as scalars~ we get 

be = cos a = (a cos y + '1) (a cos ~ + s) 

= cos ~ cos y + sin ~ sin y cos A, 

which was just required to be proved. 
(3) From a point inside the angle drop perpendiculars 

on the faces of the ~iven angle. We get, as is known (see 
Problem i65), a trihedral angle complementary to the 
Riven. The plane angles of the given trihedral angle make 
the dihedral angle of the complementary angle be e~al 
to n. Applying the first theorem of cosines to the comple­
mentary trihedral angle, we get our statement. 

i67. Take advantage of the first theorem of cosines 
(see Problem i66). 

i68. Take advantage of the second theorem of co­
sines (see Problem i66). 

169. The Sum of all the plane angles of the tetrahedron 
is equal to 4n. Hence, there is a vertex the sum of plane 
angles at which does not exceed 1t. All the plane angles 
at this angle are acute. Otherwise~ one angle would be 
greater than the sum of two others. 

170. This property is possessed by the edge ha ving 
the greatest length. 

171. Let ABC be a perpendicular section, I BC I = a, 
I CA 1 = b, I AB 1 = c. Through A pass the section 
ABICI (B and BI~ C and Cllie on the corresponding edges). 
Lettlien I BBII = I x I, I CCII = I y I. (UBI and Cllie 
on one side from the plane ABC, then x and y have the 
same sign, and if on different sides, then x and y have 
opposite signs.) For the triangle ABI C) to be re.eW.ar, 
it is necessary and sufficient that the following equalities 
be fulfilled: 
~2 + x2 = b2 + y2, 

~2 + y2 = a2 + (x _ y)2. 

~et us show that this system has always a solution. Let 
I ~ band c ~ b. It is easy to show that the set of points 
n the (x, y)-plane satisfying the first equation and 
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situated in Quadrant I is a line which approaches without 
bound the straight line y = x with increasing x and 
for x = 0, y = Ve ll - bl . (As is known, the equation 
yll - Xli = k describes an equilateral hyperbola.) Simi­
larly, the line described by the second equation ap­
proaches the straight line y = x/2 with increasing x and for x 
tending to zero y increases without bound. (The set of 
points satisfying the second equation is also a hyperbola.) 
Hence it follows that these two lines intersect, that is, the 
system of equations always has a solution. 

t 72. Denote the remaining two vertices of the tetra­
hedron by C and D. By the hypothesis, I A C I + I AD I = 
I AB I. Consider the square KLMN with side equal to 
I AB I. On its sides LM and MN take points P and Q such 
that I PM I = I AD I, I QM I = I AC I. Then I LP I = 
lAC I, I NQ I = I AD I, I PQ I = I DC I and, con­
sequently, ~ KLP = 6. ABC, 6. KNQ = 6. BAD, 
6. BDC = 6. KPQ. These equalities imply the statement 
of the problem. 

173. No, not any. For instance, if one of the plane 
anEles of the trihedral angle is sufficiently small and two 
other are right angles, tJien it is easy to verify that no 
section of this trihedral angle is a reJlUlar triangle. 

174. Show that if at least one plane angle of the 
given trihedral angle is not equal to 900, then it can be 
cut by a plane so that the section thus obtained is an 
obtuse triangle. And if all the plane angles of the trihed­
ral angle are right angles, then any of its sections is 
an acute triangle. For this purpose, it suffices to express 
the sides of an arbitrary section by the Pythagorean 
theorem in terms of the line segments of the edges and 
to check that the sum of the squares of any two sides of 
the section is greater than the square of the third side. 

t 75. Let a be the length of the greatest edge, band e 
the lengths of the edges adjacent to one of the end points 
of the edge a, and e and f to the other. 

We have: (b + e - a) + (e + f - a) = b + c + e + 
f - 2a > O. Hence it follows that at least one of the 
following two inequalities is fulfilled: b + e - a > 0 
or e + f - a > O. Hence, the triple of the line seg­
ments a, b, c or a, e, f can form a trIangle. 

176. In any tetrahedron, there is a vertex for which the 
sum of certain two plane angles is less than 1800 • (Actu-
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ally, a stronger statement holds: there is a vertex at 
which the sum of all plane angles does not exceed f8oo.) 
Let the vertex A possess this property. On the edge ema-

• f k' h /"'-.. natmg rom A ta e pOints K, L, M suc that ALM = 
/........ / "'" /"'-.. 

KAL = a, ALK = LAM = ~. It can be done if a + 
~ < f80°. 

Thus, 
6. KAL =6 LAM, t:::.. KLM = ~ KAM. 

In the pyramid AKLM, the dihedral angle at the 
ed~ A K equals the angle at the edge LM, the dihedral 
angle at the edge AM equals the angle at the edge KL. It 
is easy to make sure that the tetrahedron KLMA will be 
brought into coincidence with itself if the edge KA is 
brought into coincidence withLM, and the edge A Mwith 
KL. 

177. Sup~se that none of the plane angles of the given 
trihedral angle is equal to 90°. Let S be the vertex of the 

·s 

D 

Fig. 37 

given angle. Let uS translate the other trihedral angle so 
that its vertex is brought into coincidence with a point A 
lying on a certain edge of the given angle (Fig. 37). AB9 
A C, and AD are parallel to the edges of the other dihedral 
angle. The points Band C are found on the edges of the 
given angle or on its extensions. But AB is perpendicular 
to SC, AC is perpendicular to SB, consequently, the pro­
jections of BS and CS on the plane ABC will be respec­
tively perpendicular to AC and AB, that is, S is projected 
into the ~int of intersection of the altitudes of the trian­
gle ABC, hence, AS is perpendicular to BC. Thus, the 
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edge AD is parallel to BC, and this means that all the 
edges of the other trihedral angle belo~ to the same 
plane. And if one of the plane ~glel of thO given trihed­
ral angle is a right one, then all the edges of the other 
trihedral angle must lie in one face of the given angle 
(in one that corresponds to the right ]llane angle). If exact­
ly two plane angles of the given trihedral angle are right 
angles, then two ed~s of the other trihedral angle must 
coincide with one edge of the given angle. Thus, the 
other trihedral angle can be nondegenerate only if all the 
plane angles of tile given trihedral angle are right ones. 

t 78. The straight line l can be regarded as the diago­
nal of the rectangular parallelepiped; it makes angles cx, ~, 

Fig. 38 
and y wi th edges. Then, arranging three congruent ~aralle­
lepipeds in the way shown in Fig. 38, we obtaln that 
the angles between the three diagonals of these parallele­
pipeds emanating from a common vertex are equal to 
2a., 26, 2y. Consequently, 2a. + 2~ + 2,\, < 2n. 

t7g. Let S be tile vertex of the angle, A, B, and C 
certain points on its edges. Let uS prove that the angle 
between any edge and the plane of the opposite face is 
always less than either of tile two plane angles including 
this edge. Since an angle between a straight line and a plane 
cannot be obtuse, it suffices to consider the case when 
the plane angles adfacent to the edge are acute. 

Let Al be the proJection of A on the face SBC, A2 the 
projection of A on the edge SB, since I SA 2 I> I SAl I, /' /, /' 
ASA1 < ASA t = ASB (remember that all the plane 
angles at the vertex S are acute). From here readily fol­
lows the first part of our problem. 
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/'\ /,\ 
Let us prove the second part. We have: ASB-BSA1<;. /' /' /, /, 

ASA 1 , ASC - CSA 1 ~ ASA 1 , (at least one inequality 
is strict). Adding together these inequalities, we get 

/\. /, /' /' 
ASB + ASC - CSB < 2ASA!" 

Writing similar inequalities for each edge and adding 
them, we obtain Our statement. Taking a trihedral angle 
all the plane angles of which are obtuse and their Sum 
is close to 2n, we make sure that in this case the state­
ment of the second part will not be true. 

180. Let a and all ~ and ~1' y and '\'1 be dihedral 
angles of the tetrahedron (the angles corresponding to 
opposite edges are denoted by one and the same letter). 
Consider four vectors a, b, c, and d perpendicular to the 
faces of the tetrahedron, directed outwards with respect to 
the tetrahedron, and having lengths numerically equal 
to the areas of the corresponding laces. The sum of these 
vectors is equal to zero. (We can give the following 
interpretation of this statement. Consider the vessel 
having the shape of our tetrahedron and filled with gas. 
The force of pressure on each face represents a vector per­
pendicular to this face and with the length proportional 
to its area. It is obvious that the sum of these vectors is 
equal to zero.) The angle between any two vectors com­
plements to n the corresponding dihedral angle of the 
tetrahedron. Applying these vectors to one another in 
a different order, we will obtain various three-dimen­
sional quadrilaterals. The angles of each quadrilateral 
are equal to the corresponding dihedral angles of the 
tetrahedron (two opposite angles are excluded). But the 
sum of angles of a space quadrilateral is less than 231. 
Indeed, draw a diagonal of this quadrilateral to separate 
it into two triangles. The Sum of angles of these triangles 
is equal to 2n, whereas the Sum of angles of the quadri­
lateral is less than the Sum of angles of these triangles, 
since in any trihedral angle a _plane angle is leas than the 
sum of two others. Thus, we have proved that the fol­
lowing three inequalities are fulfilled: a + ~ + ~ + ~1 < 
2n, ~ + ~1 + '\' + '\'1 < 2n, '\' + '\'1 + a + ~ < 2n. 
(Thus, we liave proved the first part of the problem.) 
Adding these inequalities, we get a + a1 + Ii + ~1 + 
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'V + '\'1 < 3n. To complete our proof, let us note that 
the sum of dihedral angles in any trihedral angle is 
greater than n (see Problem 165). 

Adding up the inequalities corresponding to each ver­
tex of the tetrahedron, we comJllete the proof. 

Remark. In solving this problem, we liave used the 
method consisting in tha1 instead of the ~ven trihedral 
angle, we have considered another trihedral angle whose 
edges are ~rpendicular to the edges of the given angle. 
The pair of trihedral angles thus obtained pos~esses the 
following property: the plane angles of one of them com­
plement the dihedral angles of the other to n. Such 
angles are said to be complementary or polar. This method 
is widely used in spherIcal geometry. I t was also used 
for solving Problem 165. 

lSl. The statement of the problem follows from the 
fact that for a ~gular polygon the sum of the distances 
from an arbitrary point inside it to its sides is a constant. 

lS2. If S1' S,,' S,' and Sf, denote the areas of the cor-
responding faces of the tetrahedron, V its volume, then 

Xl +.!!.+.!!.+ Xf, == SlX1 + S~2 + SaXa + Sf,zf, 
hI kt kt hf, Slh1 S2hs S,ha Sf,hf, 

_SlX1 +S~2+S,X,+Sf,xf, 
3V ; 1. 

183. Let M and K denote the mid~int of the ed~s 
AB and DC of the tetrahedron ABCD. The plane passmg 
through M and K cuts the edges AD and BC at points 
Land N (Fig. 39, a). Since the plane DMC divides the 
volume of the tetrahedron into two equal parts, it suf­
fices to prove that the pyramids DLKM and KCMN are 
equivalent. The ratio of the volume of the pyramid 
KCM N to the volume of the entire tetrahedron ABCD 

is equal to -} II ~ ~ II • Analogously, for the pyramid 

DLKM this ratio is equal to! II ~1: . Hence, we 
have to prove the equality: 

IDL 1 I CNI 
1 DA 1- 1 CB 1 • 
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Let us project our tetrahedron on tim plane perpendic­
ular to tlie line KM. The tetrahedron ABCD will be 
projected in a parallelogram with diagonals A B and CD 
{Fig. 39, b). Tlie line LN will pass through the point of 
Intersection of its diagonals, consequently, our statement 
is true. 

A 

_----__ B 

8 u 
A 

(a) c (6) 

Fig. 39 

184. Let for the sake of definiteness I DA I ~ I DB I~ 
I DC I, and at least one of the inequalities is strict. Let 
us superpose the triangles DAB, DBC, and DCA so as to 
bring to a. coincidence equal angles and equal sides 
(Fig. 40). 

In the figure, the vertices of the second triangle have 
the subscript 1, those of the third triangle the subscript 2. 
But ID\tA2 I = I DA I < I DICI I (by the hypothesis). 

/, ~ 
Consequently, DaDIB is acute and BDID is obtuse and 
I DB I > I DICl.l which is just a contradiotion. 

185. Through each ed~ of the tetrahedron pass a 
plane parallel to the OppOSIte edge. Three pairs of planes 
thus obtained form a parallelepiped. 0ypoSite edges of the 
tetrahedron will serve as diagonals 0 a pair of opposite 
faces of the parallelepiped. Let, for instance, a and a1 
denote the diagonals of two opposite faces of the parallele­
piped, m and n their sides (m;;:: n). Then aIa~ cos ex = 
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m'! - nl_ Writing such equalities for each pair of oppo­
site edges, we will prove our statement. 

186. Let the sphere pass through the vertices A, B, 
and C and intersect the edges DA, DB, and DC at pointe 

Fig. 40 

K, L, and M. From the similarity of the triangles DKL 

and ABD, we find: I LK I = I AB I II ~~ II a,nd from the 

similarity of the triangles DML and DBC: I ML 1= 
I BC I II ~~: - But I AB I-I CD I = I BC I . I BD I = 
2SABC' 

Now, it is easy to make sure that I LK I = I ML I. 
Remark_ The statement of our problem will be true 

for any tetrahedron in which the products of opposite 
edges are equal. 

187 .. The fact that the points K, L, P, and N belong 
to the same plane (coplanarity) implies that 

VMKLP + VMPNK = VMNKL + VMLPN- (1) 

From Problem 9 it follows that 

VMKLP= IMKI·IMLI·IMPI VMABC, 
I MA 1·1 MB I-I MC I 

VMPNK = IMPI-IMNI-IMKI V 
IMCI-IMDI-IMAI MADe, 

VMNLlC = IMNI-IMLI·IMKI V 
IMDI.IMAI.IMBI MABn, 
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IMLI·IMPI·IMNI 
VMLPN = 1MB 1.1 MC I.IIMD I VMBCD. 

Substituting these expressions for the corresponding 
quantities in (1), dividing by I MK 1·1 ML I ·IMPI X 
I MNI, multiplying by I MA 1·1 JJJB 1·1 MCI .. IMD I, 
expressing the volume of each of the remaining pyramids 
in terms of the area of the ba!e and altitude h, we will 
get after the reduction by h/3 the statement of our 
problem. 

188. Prove that the straight line passing through the 
given point parallel to a diagonal of the cube will touch 
each ball. 

189. Both items follow from the following gene~al 
statement: if the sum a I AM I + ~ I BN I + , I CL I, 
where a, ~, 'Y are given coefficients, is constant, then the 
plane M N L passes through the fixed l>0int. This state­
men t, in turn, follows from the equahty 

a I AM I + ~ I BN I = (a + ~) I PQ I, 
where P is a point on AB, Q on MN, 

I AP I I MQ I ~ 
IPBI-IQNI a-

190. If in the tetrahedron ABCD the equality I AB 1+ 
I CD I = I BC I + I DA I is fulfilled, then, the same as 
it il done in the two-dimensional case, it is possible to 
prove that there is a ball touching the ed~s AB, BC, CD, 
DA, all the pointl of tangency being inside the line seg­
ments AB, BC, CD, and DA .. If through the centre of tlie 
ball and some edge a plane is passed, then each of the 
dihedral angles under consideration will be divided 
into two parts, and for each part of any dihedral angle 
there is a fart of the neighbouring angle which turns out 
to be equa to it .. For instance, the angle between the planes 
OAB and ABC is equal to the angle between the 
planes OBC and ABC. 

191. Let R denote the point of intersection of OM 
with the plane KLN (Fig. 41). The assertion that R is the 
centre of gravity (centroid) of the triangle KLN is equi­
valent to the assertion that the volumes of the tetralied­
rons MKLO, MLNO, and MNKO are equal. Denote 

11-0U9 
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by %, 1" " the distances from M to the corresponding 
sides of the triangle ABC. Since the plane KLM is perpen­
dicular to the ed~ AD, the distance from 0 to K LM il 
equal to the projection of OM on AD which is equal to 
tlie projection of MP on AD, where P is the foot of the 

D 

B 
Fig. 41 

perpendic ular dropped from M on B C. I t is easily seen 

that the pmjection of MP on AD equals V'3 ' where s il 

the distance from M to BC. If a is a dihedral angle be­
tween the faces of the tetrahedron A B CD, then 

1 ." xys Vi 
VKLMo=sl KM 1·1 ML I sma· y'3= 27 • 

Each of the two other tetrahedrons M LN 0 and M N KO 
will have the same volume. 

192. Project the tetrahedron on the plane passing 
through N perpendicular to CN. Let A , B I , D , K I , and 
M I denote the projections of the points 1, B, D t }t t and M. 
Tlie distance between BK and CN will be equal to the 
distance from the point N to B;Klt just in the same way, 
the distance between A M and. CN is equal to the dis­
tance from N to AIM!" But AIDIBI is an isosceles tri-
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angle. The line AIMI passes through Kl. (KI is the poin, 
of intersection of the medians). And smce the triangle 
AIKIBI is also isosceles, N is usually distant from AIKt 
and BIKJ• 

193. Let A denote a vertex of the base of the pyra­
mid, B a point in the plane of a lateral face, I AB I = a, 
BI the projection of B on a side of the base, B2 the pro­
jection of B on the plane of the base, B 3 the projection 

A 

Fig. 42 

of B" on the edge of the base adjacent to ABI , B. the 
projection of B" on the lateral face adjacent to the face 
containing AB (Fig. 42). If now a is a dihedral angle at /, 
the base of the pyramid, BABI = cp, then 

I B,Ba I = I AB1 I ==aCQI cp, 
I ABa I == I B1B, I = I B1B I eela=asin cP Cela, 

I BaBt I = I BaB, I cos a= aces cp cos a, 

and, finally, 

I ABt I = VI ABa 1"+ I BaBt II 
-=4 V sin~ cP COl" a+ces" cp cos2 a = a cos Ct. 

Hence it followl that the length of any line segment 
lying in the plane of a lateral face after a twofold pro­
jection indicated in the conditions of the problem will 
be multiplied by cos a (with the aid of translation we 
bring one of the end points of the given line segment into 
the vertex A). Consequently, in such projecting any 

11* 
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igure will go into the :ligure similar to it with the ratio 
of similitude equal to cos a. 

194. The statement of the problem follows from the 
equalities 

VAAtBC = VAAtBtC = VAAtBtCt 

and similar equalities for the volumes of the pyramids 
AA\CD and AAJDB. 

195, Let M denote the point of intersection of the 
straight lines CB1 and C1B. The vertex A lies on D M • 

____ .. B, 

.D 

c 
Fig. 43 

Through the pobltl D, D}., ud A pasl a plane. Denote 
by IC and L the points 01 its intersection with C1B1 and 
CB, and by A21 the point of intersection of the line AAI 
with DIK (Fig. 43). From the fact that CC1B1B il a trap­
ezoid and KL ~sses through the point of intersection 
of its diagonals it follows that I KM I = I ML I. Ftu1her, 
considering the trapezoid D1KLD, we will prove that 

t I A A 1 I = '2 I A A 21 I. CoJl8equen tly , 

1 
V ABCD =-. 3 V .A aBC D' 

But it follows from the preceding problem that 
V AtBCD= V A1B tC1D t" Thus, the ratio of the volumes of 
the pyramids A1B1C1D1 and ABCD is equal to 3. 
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196. Introduce the following notation: ABCD is the 
given tetrahedron I BC I = a, I CA I = b, I AB I = c, 
I D A I = m, I DB I = n, I DC I = p. Let then G denote 
the centre of gravity of the triangle ABC, N the point 
of intersection of the straight line DM with the circum­
scribed sphere, and K the point of intersection of the 

A 

/( C 

Fig_ 44 

straight line AG with the circle circumscribed about the 
triangle ABC (Fig. 44). Let us take advantage of the 
following equality which is readily proved: 

I AG I-I GK 1= {- (a2+b2+cl ). 

Then 

I DG 1·1 GN I = I AG I-I GK 1=+ (al +b21 +e21), 

conaequently, 

I GN I = a21 +::+c21 , 

where 
1 ! 

I-I DG I C:T V3m21+3n21+3p21-ai-bl-c21 (t) 
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(see Problem 51), I DN I = I DG 1+ I·GN I = t+ 
a2 +bl + C2 m2+ nl+ p2 

9t -- 3t • The assertion that OM is 

perpendicular to DM, is equivalent to the assertion that 
3 3 I DN I = 2 I DM I =2· T I DG I =2 t, that is, 

m2l+ n2l+ p2l 3 
3t 2 t, whence replacing t by its expres-

sion (1), we get 
(2) 

If AI, BIt CI are the centres of gravity of the 1'9spective 
face. DBC, DCA, and DAB, then in the tetrahedron 
A1BICID we will have 

abc 
IBICII=T' ICIAII=T' IAI B1 1=3' 

2 2 2 
I DA1 1= T ma , I DBI 1=""3 nb, I DCI I =T Pc, 

where ma' nb' and Pc are the respective medians to the 
sides BC, CA, and AB in the triangles DBC, DCA, and 
DAB. If now tl is the distance from the vertex D to the 
point M, then, since M, by the hypothesis, lie. on the 
surface of the sphere circumscribed about the tetrahedron 
AIB1C1D and the line D M passes throu~h the centre of 
gravity of the triangle AlBIC!, to determine the 'Luantity 
I D M I we may take advantage of the formula obtained 
above for I DN I, that is, 

I DM 1= 4m:+4n~+4b~ 
27tl ' 

where 

II = : V12 (m:+nl+rc)-a2l-bl -c2l• 

Taking advantage of the formula for the length of the 
median of a trianrlo, we get 

4m,1+4n l + 4pll-a'-b l - c2l 

I DM 1= 27tl ' 
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where 

tl = : V3ml +3n~+3p2-a2-b2-c2= ~ t. 

On the other hand, I DM I = f t, that is, 

4m2+4n2+4p~-a2-b2-c2 3 
1St =4 t. 

Replacing t by its expression (Formula (1)), we get (2) 
which was required to be proved. 

197 .. Fix some axis of symmetry I. Then, if I' is also 
an axis of symmetry and I' does not intersect with I or 
intersect I but not at right angles, then the line 1*, which 
is symmetric to I' with respect to I is also an axis of 
symmetry. This is obvious. And if some line 11 is an axis 
of symmetry and intersects with, and is perpendicular 
to, I, then the line 12 passing through the point of inter­
section of I and 11 and perpendicular to them will also be 
an axis of symmetry. It is possible to verify it, for ins­
tance, in the following way. Let us take the lines 1,111 and 
I. for the coordinate axes. 

Applying, in succession, to the point M (x, y, I) 
symmetry transformations with respect to the lines I 
and 111 we will brinE the point M first to the position 
Ml (x, -y, -I), and then Ml to M2 (-x, -y, I). Thus, 
a successive apl!lication of symmetry transformations with 
respect to the lines I and 11 is equivalent to symmetry 
with respect to I •• 

Our reasoning implies that all axes of symmetry, 
except for I, can be divided in pairs, that is, the number 
of symmetry axes is necessarily odd if it is finite. 

198. Let M denote the projection of B on AD. Obvi­
ously, M belongs to the surface of the sphere with diame­
ter A B. On the other hand, we can show that I A M I X 
I AD I = I AB It. Hence it follows that all points M must 
belong to a certain spherical surface containing the given 
circle. Hence, points M belong to one circle along which 
these two spherical surfaces intersect. 

199. Prove that the projections of the point M on the 
lidel of the quadrilateral ABeD lie on one and the same 
circle (if K and L are projection. of M on AB and Be, 
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then the points B, K, M, and L lie in one circle, and, 
/'.. /'.. ~ /"'--... 

hence, M LK = M BK, M KL = MBL. The same for 
other sidel). 

Then take advantage of the result of Problem 198. 
200. Since the centre of gravity lies on the lines 

joining the midpoints of the edges AB and CD, it will 
follow from the hypothesis that this line will be perpen­
dicular to the edges AB and CD. 

201. Let K and M denote the midpoints of the edges 
AB and CD. It follows from the hypothesis that the line 
KM passes through the point 0 which is the centre of 
the inscribed sphere; 0 is equidistant from the faces ACD 
and BCD. Consequently, the point K is also equidistant 
from these faces. Hence it follows that these faces are 
equivalent. In the same way, the faces ABC and ABD 
tum out to be equivalent. If we now project the tetrahed .. 
ron on the plane parallel to the edges AB and CD, then its 
projection will be a parallelogram with diagonals AB 
and CD. Hence there follows the statement or our 
problem. 

202. Rotate the cube through some angle about the 
diagonal A Ct. Since the plane of the triangle A1BD is 
perpendicular to AC1 and its sides are tangent to the 
ball inscribed in the cube, the sides of the triangle ob­
tained from A1BD after the rotation will also touch the 
inscribed ball. With the angle of rotation appropriately 
chosen, the face AA1B1B will go into the given plane, 
and the line segment MN will be a line segment of the 
rotated face. 

203. Denote by t£, ~, Y the angles formed by rectan­
gular faces with the fourth face. If Sl' S2, Sa, S4 are 
the respective areas of the faces, then Sl = S4 cos a, S2= 
S. cos 6, S, == Sf, cos y. After this, we may take advan­
tage 01 the fact that cost a+cosl 6+cost y = 1. This 
follows, for example, from the fact that the angles made 
by the altitude dropped on the fourth face with the lat­
eral edges of the pyramid are also equal to a, ~, and y 
(lee Problem 10). 

204. Take a straight linejerpendicular to the given 
plane and denote by a, ~,an y the angles made by this 
line with the edges of the cube. The projections of the 
ed~s on the plane take on the values sin a, sin ~, sin ". 
And since COI~ a + cost ~ + cos! y= 1, the sum of Hie 
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squares of the projections will be equal to 

4a2 (sin2 ex + sin2 ~ + sinl y) = 8al , 

169 

where a is the edge of the cube. 
205. Through each edge of the tetrahedron pass a plane 

parallel to the opposite edge. We will obtain a cube 
with a tetrahedron inscribed in it. If the ed~ of the 
tetrahedron is b, then the edge of the cube will be equal 
to bl-Y2. The projection of each face of the cube is a paral­
lelogram whose diagonals are equal to the projections of 
the edges of the tetrahedron. The sum of the squares of 
an diagonals is equal to the doubled sum of the squares 
of the projections of the edges of the tetrahedron and is 
equal to twice the sum of the squares of the projections of 
tlie edges of the cube. 

Taking advantage of the result of the preceding prob­
lem, we get that the sum of the squares of the projections 
of the edges of a regular tetrahedron on an arbitrary 

b2 
plane is equal to 8""2 = 4b2• 

206. Consider first the case when the given straight 
lines are skew lines. Denote by A and B the positions of 
the points at some instant of time, k is the ratio of their 
velocities (the velocity of the body situated at the point 
A is k times the velocity of the other body). M and N are 
two points on the line AB such that I A l'rl I : I MB I = 
I AN I : I NB I = k (M is on the line segment AB), 
o is the midpoint of MN. The proof of the statement of 
our problem is divided into the following items: 

(1) The points M, N, and 0 move in straight lines, 
the straight lines in which the points A, B, M, N, and 0 
move are parallel to one plane. 

(2) The lines in which the points M and N move are 
mutually perpendicular. 

(3) If two straight lines are mutually perpendicular 
and represent skew lines, then any sphere constructed on 
the line segment whose end points lie on these lines, as 
on the diameter, passes through the points P and Q, 
where PQ is a common perpendicular to these lines 
(P and 0 are situated on the straight lines). 

(4) The locus of points L such that I A L I : I LB I = 
k is the surface of the sphere constructed on M N, as on 
the diameter. 
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From the statements (1) to (4) it follows that the circle 
whose existence is asserted in the problem is the circle 
obtained by rotating the point P (or Q) about a straight 
line in which the pOint 0 moves, where P and Q are the 
end points of the common perpendicular to the straight 
lines in which the points M and N are displaced. 

Items (1) and (2) can be proved, for instance, in the 
following way. Let A 0 and Bo denote the positions of the 
points at a certain fixed instant of time. Let us project 
our p_oints parallel to the straight line AoBo on a 'p'lane 
parallel to the given lines. The points A 0 and B 0 will be 
projected into one point C, and the points A, B, M, N, 
and 0 will be projected into the respective points A', B', 
M', N', and 0'. Then the points M' and N' will repre­
sent the end points of the bisectors of the interior and the 
exterior angle C of the triangle A' B' C'. Hence, M', N', 

./"-.... 
and 0' move in straight lines, and M' CN' = 90°. Hence 
it follows that the {loints M, N, and 0 also displace in 
straight lines, since It is ohvious that each of these points 
lies in the fixed plane })arallel to the given lines. Item (3) 
is obvious. Item (4) follows from the corresponding state­
ment of plane geometry. 

In the cale when the points A and B move in two inter­
secting lines, the relevant reasoning is somewhat changed. 
The problem is reduced to the proof that in the plane 
containing the given lines there are two fixed points P 
and Q such that 1 AP 1 : 1 PB 1 = 1 AQ 1 : 1 QB 1 = k. 

207. Let 0 denote the centre of the ball, r its radius, 
AP and BQ the tangents to the ball (P and Q being the 
pOints of tangency), M the point of intersection of the 
lines AP ano BQ. Setting 1 OA 1 = a, 1 OB 1 = b, 
1 PM 1 = 1 QM 1 = x. Then 10M II=r2+x2, 1 AM 12= 
(ya2 - rl + x)l, 1 B M 12 = CV bl - r' + X)2. 

If the signs are of the same sense, then the following 
relation.hip is fulfilled: 

-ybl -r2 1 AM 12_ -yal-ri 1 BM 12 

+(ya21-rl-ybl -rl) I OM II=lp (1) 
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If the signs are opposite, then 

Vb2l-r2 1 AM 12I+Val -r2lIBMII 

-(Val-r2+ lfb2-r2) 1 O~M 121=12' (2) 

where 11 and '2 are constants depending on r, a, and b. 
Since the sum of the coefficients of I AM 121, I BM 12 

and I OM 12 in Equations (1) and (2) is equal to zero, 
the locus of _points M for which one of these relation­
ships is fulfilled is a plane. In both cases thil plane is 
perpendicular to the ~lane OAB. 

208. Let ABC be the given triangle whose eides, as 
usually, are equal to a, b, and e. The radii of the three 
balls touching one another and the plane of the triangle 

at points A, B, and C are respectively equal to ~: ' ~: ' 

;:. Denote by x the radius of the ball touching the three 

given balls and the plane of the triangle, M is the point 
of tangency of this ball and the plane. We have: 

1 MA 1 =2 Vb;:, 1 MB 1 = 2 Va;: ' 
IMC 1 =2 Va::. 
Consequently, I MA I: I MB I = b: a, I MB I: IMCI = 
e : b or I MA I : I MB I : I MC I = be : ac : abo 

For any irregular triangle there are exactly two points 
Ml and M I for which this relationship is fulfilled. Here 
we take advantage of Bretschneider'e tlieorem. Let ABCD 
be an arbitrary plane quadrilateral. Let AB = a, BC = 
b, CD = e, andDA = dt AC = m and BD = n. The 10m 

A A 

of the angles A + C = cpo Then the equality m2n2 = 
a2le21 + b2ltJI - 2abed cos cp holdl. We then obtain that 

A 

if A a:;z:: a is the smallelt anKlt 01 the trfanKle, then the 
,/""... /'... 

Ulilel B M 1 C and B M 21C are .qual to 60- + c anti 00--&. 
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Let G';c = 60° + a. Write for the iriangle BMl C 
the theorem of cosines, denoting the radius of the ball 
touehing the plane at point Ml by r (x = r), 

a2 = 2~cr + "':br 4ar cos (60°+ a) 

~ ~=2 (--E.....b +~_ 2 cos (60o+a) ). (1) 
r a ac a 

Analogously, designating the radius of the ball touching 
the plane at point M 2 by p, we get 

1-=2 (.!-+~_ 2 cos (OOO-a) ) (2) 
P ab ac a • 

Subtracting (2) from (1), we obtain 
1 1 4 [cos (600-a)-cos (60°+ a)] 
---= 

r p a 

8 sin 60° sin a _2 Va 
a - R 

which was required to be proved. 
209. Let M denote tlie midpoint of AB, 01 and O. 

the centres of the balls, Rl and R2 their radii, then 

1 MOl Ii_I M02 12= (RI+ 1 A: 12) _ (Ri+ !A!12) 

=Rl-RI· 
This meanl that the midpoints of all the line segments of 
common tan~nts to the given balls lie in one and the 
same plane whieh is perpendicular to the line segment 
Ol0s:. Hence follows the truth of the statement of our 
pro))lem. 

210. Such pentagon does not exist. 
211. Let A1A.A.AcA& be the given pentagon. It fol­

lows from the liypotliesis tha t all the diagonals of the pen­
tagon are equal to one another. Choose three vertices of 
the pentagon so that the remaining two vertices lie on 
one lide of the plane determined by the Ihree ehol8D 
vertices, say, A2t A" and A •• Then the vertices A}. and A. 
will be Iymmetrie to eaoh other with relpect to the plane 
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passing through the midpoint of A zA. perpendicular to 
A.A3' This follows from the fact that tlie triang!e AzAaAli 
is isosceles, I A.A Ii I = IA3AIi I, Al and At he on one 
side of the plane A 2AaAli' and I AIAt I = lAtA. I, 
I AIAIi I = I AtAIi I, and I AlA. I = I AtAt I· Hence, 
the points AI' At, A., and At lie in one plane. The further 
reasoning is clear. The cases when the sought-for plane 
passes through other vertices are considered in a similar 
way. 

212. Let M denote the point of intersection of the 
diagonal A CI and the plane AIBD. Then M is the point 

'~--+-~N 

B 

Ai 
Fig. 45 

of intersection of the medians of the triangle AIBD (so­
called median point) and, besides, M divides tile diago-

nal ACI in the ratio 1 : 2, that is I AM I = ! d. 

Consider the pyramid ABAID (Fig. 45). On the line 
BM take a point K such that I MK I = I BM I, and con­
struct the prism M KD AN P. You can easily notice that 
the distances between the lateral edges of this prism are 
equal to the respective distances from the points AI' B, 
and D to AM. Consequently, the sides of the section per­
pendicular to the lateral edges of the prism MKDANP 
are equal to these distances. Further, the volume of the 
pyramid ABAID is equal to the volume of the constructed 
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prism and amounts to one sixth the volume of the paral­

lelepiped, i.e. {- V = ~ dS, V = 2dS. 

213. Let 14 denote the centre of gravity of the tetra­
hedron ABCD. The volume of the pyramid MABC is one 
fourth the volume of the given tetrahedron. Complete the 
pyramid MABC to get a parallelepiped so that the line 
segments MA, MB, MC are its edges. Figure 46 repre-

A 
A 

c 

Fig. 46 

sents this parallelepiped separately. It is obvious that 
the edges MC, CK, KL and diagonalMLof this parallel­
epiped are respectively equal and parallel to MC, MA, 
MB, and MD. But the volumes of the pyramid. MABC 
and MCKL are equal to each other, that is, each of them 

is equal to ~ V ABCD. ConMquontly, the volume of the tet-

rahedron in question equals (~) 2 
• ~ V ABCD = ~~ V. 

214. When solving Problem 180, we proved that the 
sum of the vectors, perpendicular to the faces of the 
tetrahedron, directed towards outer side with respect to 
the tetrahedron, and whose lengths are numerically equal 
to the area of the corresponding faces, is eCJWlI to zero. 
Hence follows the existence of the tetrahedron K LM N. 

In finding the volume of the tetrahedron, we shall 
take advantage of the following formula: 

V = ! abc sin ex sin ~ sin C, 
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where a, b, and c denote the respective lengths of the 
edges emanating from a certain vertex of the tetrahedron, 
a and ~ two plane angles at this vertex, and C the dihed­
ral angle between the planes of the faces corresponding to 
the angles a and 6. If now a, ~, and yare all plane angle a 
at this vertex and A, B, and C are dihedral angles, then 

V3 = ( ! ) 3 a3b3c3 sin2 a sin2 ~ sin' "/ sin A sin B sin C. (f) 

Take now a point inside the tetrahedron, and from it 
drop perpendiculars on the three faces of the tetrahedron 
corresponding to the trihedral angle under consideration, 
and on each of them layoff line segn).ents whose lengths 
are numerically equal to the areas of these faces. Obvious­
ly, the volume of the tetrahedron formed by these line 
segments is equal to that of the tetrahedron KLMN. 
TJie plane angles at the vertex of the trihedral angle 
formed by tliese line segments are equal to f80° - A, 
fBOo-B, fBOo-C, and the dihedral angles to f80 0 -

a, f80° -~, f80° -yo Consequently, making use of Equal­
ity (f), we get for the volume W of tJiis tetrahedron 

WS = (~) 3 S~SfSl sin2 A sin! B sinl! C sin a sin ~ sin "/, (2) 

where Sl' Sz, S3 are the areas of the faces formed by the 

edges a, b, and c, respectively, that is, Sl = ~ ab sin y, 

S z = ; k ain a, S 3 = ; ca sin ~. 
Replacing Sl' Sz, S3 in (2), we get 

W'= (~) 3 (~) 9 alb'c6 sini a sint ~ sini y sinz A sin2 B 

X sinz C. (3) 
Comparing Equations (f) and (3), we obtain 

3 
W =.: 4" VI. 

2f5. The statement of the problem follows from the 
fact that the products of the line segments into whIch each 
of these chords is divided by the point of intersection 
are equal. 
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217. The statement of our problem follows from the 
following fact of plane geometry. If through a point P 
lying outside of the given circle two strai~ht lines are 
drawn intersecting the circle at the respectIve points A 
and AI' Band B I , then the line AIBI iSlarallel to the 
circle circumscribed about P AB passe through the 
point P. 

Thus, the set of points under consideration will be­
long to the plane parallel to the plane which touches (at 
the point P) the sphere passing tnrough the given circle 
and point P. 

218. The equation 

(x - a)2 + (y - b)2 = k2 (z - e)Z 

describes a conical surface whose vertex is found at the 
point S (a, b, e), the axis is Jlarallel to the s-axis, k = 
tan a, where a is the angle between the axis of the 
cona and its generatrix. Subtracting from each other 
the equations of two conical surfaces with axes parallel 
to the z-axis, equal parameters k, but different veI1ices, 
we get a linear dependence relating x, y, and z. 

2f9. Denote by F the point of intersection of the 
lines KL and MN and by E the point of intersection 
of the line PF and the sphere passing through the ~ints 
P, A, B, and C (supposing that P does not lie in the plane 
of the face ABC). 

The points P, Q, R, and E belong to one circle repre­
senting the section of the sphere passing through the 
points P, A, B, and C by the plane passing through the 
points P, K, and L. But since F is the point of inter­
section of the lines KL and MN, the points P, S, T, and 
E must belong to the circle which is the section of the 
sphere passing through the points P, A, C, and D by the 
plane determined by the points P, M, and N. Conse­
quently, the points P, Q, R, S, and T lie on two circles 
liaving two common pomts P and E, and such two cir­
cles lie long to one sphere . 

Remark. We have considered the case of the ~neral 
position of the given points. To get a complete solution 
we have to consider several particular cases, say, Plies 
in the plane of the face, KL and MN are parallel lines, 
and so on. 
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220. Let the edges SA, SB, SC, and SD of a quadri­
hedral angle be elements of a cone whose axis is SO. Then 
in the trihedral angle formed by the lines SO, SB, and 
SC, the dihedral angles with the edges SA and SB are 
equal. Considering three other such angles, we get easily 
tliat the sums of opposite dihedral angles of the given 
quadrihedral angle are equal. 

Conversely. Let the sums of opposite dihedral angles 
be equal. Consider the cone with the lines SA, SB, and 
SC as its elements. Suppose that SD is not an element. 
Denote by SD1 the straight line along which the surface 
of the cone and the plane A SD intersect. We will obtain 
two quadrihedral angles SABCD and SABCD1 in each 
of which the sums of opposite dihedral angles are equal. 
This will imply that in the trihedral angle which is 
comj)lementary to the angle SCDD1 (see the solution of 
Problems 165 and 166) one plane angle is equal to the 
sum of two others which is impossible. 

221. Let all the vertices of the hexahedron 
ABCDEFKL, except for C, lie on the surface of the 

L 

A 

B 

Fig. 47 

sphere with centre 0 (Fig. 47). Denote by C1 the point 
of intersection of the line KC with the surface of the 
sphere. 

For the sake of brevity we shall symbolize by <f.. FEL 
the dihedral angle between the planes F EO and FLO 
(the remaining dihedral angles are denoted in a similar 

12-0""8 
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way). Using the direct statement of Problem 220, we 
may write: 

.4 FEL + .4 FKL = ,4: EFK + ,4: ELK, 

,4: AEF + ,4: ABF = ,4: EAB + ,4: EFB, 

,4: AEL + .4 ADL = 4- ELD + ,4: EAD, 

,4: FKCI + ,4: FBCI = ,4: KFB + 4- KCIB, 

4- LKCI + ,4: LDCI = ,4: KLD + ,4: KCID. 

Adding together all these equalities and taking into 
consideration that the sum of any three dihedral angle5 
having a common edge (say, OE) is equal to 2n, we get 

4. ABCI + ,4:ADC1 = 4- BAD + 4- BCID, 
and this means (see the converse statement of Problem 220) 
that the edges OA, OB, OCI , and OD are elements of one 
cone. Hence it follows that CI lies in the plane ABD, 
that is, CI coincides with C. 

The case when 0 is situated outside the polyhedron 
requires a separate consideration. 

222. Let ABCD be \he given tetrahedron, K, L, M, 
N, P, and Q the given points on the respective edrs 
AB, AC, AD, BC, CD, and DB. Denote by DI the pomt 
of intersection of the circles passing through: X, B, N 
and C, L, N. It is not difficult to prove that the point DI 
belongs to the circle passing through the points A, K, 
and L. Analogously, we determine the pOints AI' B17 
and C1 in the planes BCD, A CD, and ADB. Let, finally, 
F be the point of intersection of the three spheres circum­
scribed about the tetrahedrons KBNQ, LCNP, and 
NDPQ. Take advantage of the result of Problem 22f. 
In the polyhedron with vertices B, N, AI' Q, K, DI, F, CI 
all the vertices lie on the surface of the sphere, five faces 
BKDIN, BKCIQ, BNAIQ, DINAIF, AIQC1F are plane 
quadrilaterals, consequently, KDIFCI is also a plane 
quadrilateral. In the same manner, prove that LDIFBI 
and MBIFCl. are also plane quadrilaterals. 

And, finally, in the hexahedron A KDJ-LMBIFCI seven 
vertices A, K, DJ..' L, M, B I , CI lie on the surface of the 
sphere passing through A, K, L, and M, hence, the 
point F also lies on the same sphere. 
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Section 3 
224. Let S be the vertex of the angle. Cut the ~le 

by a plane so as to form a pyramid SABCD in whlch 
ABCD is the base and the opposite lateral edges are equal: 

I SA I = I SC I, I SB I = I SD I. 
(Prove that this can be done always.) Since the plane 
angles at vertices are equal, ABCD is a rhombus. Let 
o tie the point of intersection of A C and BD. Set I A C I = 
2x, I BD I = 2y, I SO I = z and suppose that x ~ y. /, /' 
If ASC and BSD are acute, then z > y, and this means 
that in the triangle ASB I AB I < I AS I < I BS I, /, /, 
that is, A SB is the smallest angle of this triangle, A SB < 
600 • 

The supposition that both angles are obtuse is con­
sidered in the same manner. 

4 
225. From Sh to 3 Sh. 

226. The greatest volume is possessed by the tetra­
hedron two opposite edges of which are mutually per­
pendicular and are the diameters of the bases. Its volume 

is equal to ~ Rlh. 

227. Let I AB I = I BC I = i, I AAI I = x. 

i Vi i 
VDD1BC1=TSDBD1·2"= 6_ x • 

On the other hand, 

V DD1BCl = ~ S DBCl I DIB I sin <p 

=~2·V ++xl -V2+xI Sin<P, 

where <p is th.e angle between DIB and the plane DBC1• 

Thus, 

ainq>= V (2+X~ (i+2z'l' sn!, q> =2.:'+ :. +5~, 
12* 
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whence it follows that the greatest value of q> will he 
. i 

arcSlD S ' 
228. Let the altitude of the prism be equal to 1, 

I A M I = x. Circumscribe a circle about the triangle 
I AIMCI I· Consider the solid obtained by revolving the 
arc AIMCl 5>f this circle about the chord AICI . The angle 
AIMCI wiu be the greatest if the line AB touches the 
sUrlace of the solid thus R8nerated. The latter happens 
if the lines MO and AB, where 0 is the centre of the circle 
circumscribed about th& triangle ABC, are mutually 
perpendicular; hence, the line MO divides AICI in the 

, I AM I z 
ratiO I MB I 2-x' 

On the other hand, it is possible to show that MO 

d' Id A C in the t' I AIM I eosCc':M E IV es I I ra 10 /"-.. . x-

I CIM I cos ClAIM 
pressing the sides and eosines of the angles of the 
triangle AIMCI in terms of %. we get the equation 

whence %=t. The greatest value of the angle A I MC1 

" equaJaT' 
229. The lines AE and CF are mutually perpendicu­

lar. Let QI be the projection of Q on the plane ABBI AI' 
QJ. lies on the line segment BL, where L is the midpoint 
of AAI . Let N be the point of intersection of AE and 

LB. It Is easy to Iiad that 1 AN 1-~5' Setting 

i 
I AP I = vg+ %, 1 NQI I = y, we get I PM II = 

8 +( t )2 I PQ II _'1:+ 1+ I PM II . 5" VS+%, =.- y i, I PQ II attaJDII 

the greatest value for y=O. It remains to find the 
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greatest value of the fraction 9/5+ (2/V5) X+X2 
x2+1 

This value i. attained for '" = J5. 
Answer: V 2. 
230. Consider the triangle KLM representing the 

projection of the given triangle on the plane ABCD, 
K lying on the line CB, L on CD, M on CA. If ICKI = 

x, then I CL I = I a-x I, I CM I =V2!a-+ l_ 
It is rather easy to get that 

SKLM = ~ Ix (a-x)-a (a- ; ) I 
1 =T (2xl -&x +2a2). 

7a2 
The least value is equal to 32 . 

231. Let x denote the altitude of the parallelepiped. 
Consider the section of the pyrami~ by the plane passing 
at a distance x from its base. The section represents 
a square with side (1 - x); a rectangle of area s which 
is a face of the parallelepiped is inscribed in the square. 
Two cases are possible: 

(1) The base of the parallelepiped is a square with 
side V;. The diagonal of the parallelepiped d =­
V xl + 2s, and 

V2 -.i-
(1-z) """2 < r s < (i-x) 

or 

1-V2s<x ~ i-V;' 

Thus, in this case if s < ~ , 1-2 V2s + 4s~dl ~ 
... r- 1 ~ -.i-

1-2 y 6+ 361 and if s~T' f2s<d2~1-2 y s+3.y. 
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(2) The sides of the face of the parallelepiped inscribed 
in the section are parallel to the diagonals of the section. 
Let us denote them by y and z. Our problem consists in 
investigating the change of the function d2 = x2 + 
yl + :;1 under the conditions 

{ 
yz= s, 

y+s= (1-x) Y2. ~ 

(The latter system is consistent if 1 -x > Y 2s, O<x:< 
i-Y2s.) We have 

d2 = xl + (y + :;)2 - 2y:; = x2 + 2 (1 - X)2 - 2s 
= 3x' - 4x + 2 - 2,. 

t 
If s < tS ' then the least value of dl is attained for 

Z= ; , and if s> t1S ' then for x=1-Y2s. Besides, 

d i < 2-21. Combining the results of items (1) and (2), 
we get the aDlwer. 

Answer: if 0 < , =E;;; 11S t then 

V f- 2s =E;;;d < V2-2s~ 
. 1 7+2y6 
If 18 <,< 25 ,then 

V 1-2 Y2s+" =E;;; d < Y2-2s; 

. 7+2 y6 1 
If 25 ~ s < ""2' then 

V 1-2 y2s+":< d =E;;; V 1-2 y,+3s; 
if ~ :<'< 1," then 

f2l< d ~ V 1-2 Vs+&, 
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232. Cut the polyhedron ABCAIMNCI by the/lane 
passing at a distance h from the plane AIB).CI an pro­
Ject the section thus obtained on the plane AIBICI 
(Fig. 48). In the figure, the projection of this section is 

Fig. 48 

shown in dashed line. It is obvious that the circle of the 
base of the cylinder must be located inside the trapezoid 
KLNCI (K, L are the respective points of intersection 
of Al CI and M N with the projection of this sectionl. If 
h = 3, then the section plane coincides with the pane 
AB C and the points K and L with the midpoints of the 
sides BICI and AICI • If h < 3, I ML I = I AIK 1= 
h h h 
3' I LN 1 , i-3 , I KCI I=2-To 

We can readily verify that for h < i the radius 

of the greatest circle contained in the trapezoid KLNCI 

is equal to V:a, and for h > i this radius is equal 

to the radius of the circle inscribed in a regular triangle 

with side I KC I = 2- ~ that is! it is equal '0 
(2-~) va . 

3 6 ~ 
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33· 3 
Answer: (a) if 0 < h:< 2' v=Tif nh; if 2< h:< 3, 

V = f~ h (2 - ~ ) I ; 

(b) the greatest value of the volume will be obtained 
&t 

for h=2, V= 27 . 
233. If the plane passed through our line segment 

parallel to the face ABBlAl cuts CB at the point K so 
that I CK I = x, then the projection of the line segment 
on the face ABC has a length x, and its projection on the 
edge CCI is equal to I a - 2x I; thus, the length of the 
line segment will be equal to 

V x2+(a-2x)2= V5x2-4ax+a2. 

The minimal length is equal to ;5 . 
234. The following statement is an analogue of our 

problem in the plane. Given an angle and a point N 
inside it. Consider all possible triangles formed by the 
sides of the angle and straight line j)assing through the 
point N. Among such triangles, the smallest area is 
possessed by the one for which the side passing through N 
is bisected by the point N. 

Let us return to our problem. Let M be the given point 
inside the trihedral angle. The plane passing through 
the point M intersects the edges of the trihedral angle 
at points A, B, and C. Let the line A M intersect BC 
at N. Then, if the passed plane cuts off a tetrahedron of 
the least volume, the point N must be the midpoint of 
BC. Otherwise, rotating the plane about the line AN, 
we will be able to reduce the volume of the tetrahedron. 

235. If h is the altitude of the segment, then its 
f f ~ 

volume is equal to ""2 Sh-a nh3 . The greatest 

volume will be achieved ~for 'h:::::. V :n ; it will be 

S .. /S 
equal to ""3 V 2n' 

236. Note that the shadow thrown only by the upper 
face of the cube (Il!SUming th4t aU the remaining facal 
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ab 
are transparent) represents a square b on a side. 

-a 
Hence it follows that the area of the shadow cast by the 
cube will be the least when the source of light is located 
above the upper face (only the upper face of the cube is 

illuminated); it will be equal to ( b ~a ) 2 with the area 

of the lower face of the cube taken into account. 
237. The statement (1) is true, let us prove this. 

Denote by PI the polygon obtained when our polygon is 
cut by a plane not passing through its centre, S denoting 
the area of this polygon. PI is a polYROn symmetric to PI 
with respect to the centre of the porygon. Let us denote 
by II the smallest convex polyhedron containing PI and 
PI (II is called the convex .lull of PI and PI). Obviously, 
II is a central-symmetric polrgon, its centre coincides 
with the centre of the origtna polyhedron. All the ver­
tices of II are either vertices of PJ.. or vertices of PI. 
Let P denote the polygon obtained when II is intersecteo 
by the plane passing through the centre parallel to the 
faces of PI and P'4! q its area. Let us take a face N of the 
polyhedron II different from PI and P 2 • It is obvious 
that any section of the polyhedron II by a plane parallel 
to N must intersect either simultaneously all the three 
polygons PIt P2 , and P or none of them. Since the poly­
hedron II is con vex, the line segments ll' l2' and l along 
which this plane cuts PIt P 2 , and P are related as follows: 

l ~ ~ (l1 + l2). Hence it follows that q> S. (We inte-

grate the inequality l > -} (l1 + l2) with respect to all 

possible planes parallel to N.) 
The statement (2) is false. Let UI conltruct an example. 

Consider in a rectangular Cartesian coordinate system the 
polyhedron whose points satisfy the inequality 1 x 1 + 
Ify 11+ 1 , 1 < 1. (This J>olyhedron represents a reg­
ularloctahedron.): All tlie faces of this polyhedron are 
regular triangles with side -y2 and radius of the circum-

scribed circle V i . The section of this polyhedron by 

a :plane :passing through the origin and :parallel to any 
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face represents a regular hexagon with side ~i and 

1'2 the same radius of the circumscribed circle. But 2 < 

vi-
Remark. For an arbitrary convex central-symmetric 

solid the following statement is true. Let Rand R 0 denote 
the radii of the smallest circles containing the sections 
of the given solid by two parallel planes, the second 

plane passing through the centre; then R 0 ~ ~3 R. As 

we have already seen, an e<I!lality in this case is 
achieved for a regular octaheoron. 

238. 413. 
239. Let A and B be the vertices of the cones, M and N 

two points on the circle of the bases, L a point diametri-
cally opposite to the point M (I AM I = V rI + JI1, 
IBM I = V r2 + h2). Through M pass a plane perpen­
dicular to A M and denote the projections of B tN, and 
L on this plane by BIt N1 , and L1 . The distance between 
AM and BN is equal to the distance between M and 
BINI' and cannot exceed I MBI I. 

The condition h ~ H implies that I MB 1 I ~ I M Ll I, 
that is, the point Bl is situated inside, or on the boundary 
of, the projection of the base of the cones on the passed 
plane, and the distance between M and BINI is equal to 
MBI if MBI and BINI are mutually perpendicular. 

(h+H) r 
Answer: V · 

r2+HI 
240. Extend the edge BIB beyond the point Band 

on the extension take a point K such that I B K I = a. 
As is readily seen, K is equidistant from all the sides of 
the quadrilateral AB1CD. On the diagonal BID take 

a point L such that II ~1; II Vi. The point L is the 

end point of the bisectors of the triangles BJ"AD and 
BICD and, hence, L is also equidistant from the sides 
a the quadrilateraIAB1CD.Now, we can prove that all 
the pointes of ~e lin~ K L a~ equidistant from tb~ ~idea 
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of the quadrilateral. Thus, the sought-for radius is equal 
to the shortest distance between the line KL and any of 
the lines forming the quadrilateral ABlCD. Find the 
distance, say, between the lines KL and AD. Projecting 
the points K and L on the plane CD Dl Cl , we get the 
points Kl and L l • The desired distance is equal to the 
distance from the point D to the line KILl' 

Answer: a V 1- ~2. 
241. Let the diagonal A Cl lie on the edge of the di­

hedral angle, the faces of the angle intersect the edges 
of the cube at points M and N. It is not difficult to notice 
that if the volume of the part of the cube enclosed inside 
this angle reaches its greatest or smallest value, then 
the areas of the triangles A C M and A CIN must be equal 
(otherwise, rotating the angte in the required direction, 
we shall be able both to increase and decrease this 
volume). 

If 0 < CG < 600 , then the part of the cube under con­
sideration has a volume contained in the interval from 

1 to 1 . For CG = 600 this 
2 V 3 cot ~ 3 ( 1 + Va cot ~ ) 
volume is constant and is equal to 1/6. 

For 600 < CG ~ 1200 the extreme values of the inter­
val must be increased by 1/6 and CG replaced by CG - 600 , 

for 1200 < CG < 1800 they must be increased by 1/3, and 
CG replaced by CG - 1200 • 

242. Note that the area of the projection of any par­
allelepiped is always twice the area of the projection 
of some triangle with vertices at the end points 
of three edges of the parallelepiped emanating from one 
of its vertices. For a rectangular parallelepiped all such 
triangles are congruent. The greatest area of the pro­
jection of a rectangular parallelepiped will be obtained 
when one of such triangles is parallel to the plane on 
which the parallelepiped is projected. Thus, the greatest 
area of the projection is equal to Va2b2 + b2c2 + c2a2 • 

243. Prove that the volume of such tetrahedron is loss 
than the volume of the tetrahedron two faces of which 
are regula:r triangles with $ide of 1 formins a right angle, 
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244. (i) This statement is false. For instance, take 
inside the triangle ABC two points DI and EI such that 
the sum of the distances from DI to the vertices of the 
triangle is less than the sum of the distances from EI 
to the vertices. Now, take a point D sufficiently close 
to DI so that the sum of the distances from D to the ver­
tices A, B, and C remains less than the sum of the 
distances from the point E I • Take E inside ABCD on 
the perpendicular to the plane AB C erected at the point 
EI • 

(2) This statement is true. Let us prove this. Denote 
by M the point of intersection of the line DE and the 
plane ABC. Obviously, M lies inside the triangle ABC. 

The lines AM, BM, and CM separate the plane of 
the triangle ABC into six parts. The projection of D 
on the plane ABC, the point DI , is found in one of these 
six parts. Depending on the position of D}t one of the 

/"'--. ~ /""..., 
angles DIMA, DIMB, DIMC is obtuse. If the angle 

/""-.... 
DIMA is obtuse, then DMA is also obtuse, and, hence, 
the angle DEA is also obtuse. Hence it follows that 
1 DE 1 < 1 DA I. 

245. Let 2a be a side of the base, h the altitude of the 
pyramid. Then R is equal to the radius of the circle cir-
cumscribed 3bout the isosceles triangle with base 2a Y2 
and altitude h, R = 2a2

2t h2 
; r is equal to the radius 

of the circle inscribed in an isosceles triangle with base 2a 
and altitude h, 

r = ~ (Ya2 +hz-a). 
h 

Let 
R 
r 

We will have 2 + x = 2k (y i + x - i), whence 
XZ + 4 (i + k - k2) X + 4 + 8k = O. The discriminant 
of this equation is equal to i6k2 (k2 - 2k - i). Thus? 
If ~ t~ + i, which was req:uireq to be proveq: 



Answers, Hints, Solutions 189 

246. The centres of gravity of the faces of the tetra­
hedron serv& as the vertices of the tetrahedron similar 
to the given one with the ratio of ~imilitude 1/3. Conse­
quently, the radius of the sphere passing through the 
centres of gravity of the faces of the given tetrahedron 
is equal to R13. Obviously, this radius cannot be less 
than the radius of the sphere inscribed in the given tetra­
hedron. 

247. Let in the tetrahedron ABCD I AB I = b, 
I CD I = c, the remaining edges being equal to a. If N 
is the midpoint of AB and M is the midpoint of CD, 

c R ------
/ 

/ \!( 
/ --~ / P \ p' 

B----1r-_~ 
N A L "----L...---~S 

a 
Fig. 49 

then the straight line MN is the axis of symmetry of the 
tetrahedron ABCD (Fig. 49, a). Now it is easy to prove 
that the point for which the sum of the distancea to the 
vertices of the tetrahedron reaches the smallest value 
must lie on the line MN. Indeed, let us take an arbitrary 
point P and a point P' symmetric to it with respect to 
the line M N. Then the sums of the distances from P 
and P' to the vertices of the tetrahedron are equal. 
If K is the midpoint of P P' (K lies on M N), then in the 
triangles PAP', PBP', PCP', and PDP', AK, BK, CK, 
and DK are the respective medians, and a median of 
a triangle is less than the half-sum of the sidea includini 
it. 

The quantity I MN I is readily found: 
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Consider the equilateral trapezoid LQRS. (Fig. 49, b) 
in which the bases I LS I and I QR I are equal to b and c, 
respectively, and the altitude is equal to d. Let F and E 
be the res:pective midpoints of the bases LS and QR. 
If K isa pomton MN, and Ton FE, and I FT I = I NK I, 
then, obviously, the sums of the distances from K to the 
vertices A, B, C, and D and from T to the vertices 
L, s, Q, and R are equaL And in the trapezoid LQRS 
(as well as in any eonvex quadrilateral) the sum of the 
distances to the vertices reaches the least value at the 
point of intersection of the diagonals and is equal to the 
sum of diagonal s. 

Answer: -V 4a~2-+-2=b-c. 
248. Prove that the shortest way leading from the 

point A belonging to the circle of the greater base to the 

diametrically opposite/oint c of the other base consists 
of the element AB an diameter BC. Its length is 2R. 
Denote by r the radius of the smaller base, by 0 its centre. 
Consider the path leading from A to some point M be--longin~ to the smaller base. The arc AM situated on the 
laterar surface of the cone will have the smallest length 
if a line segIl!ent will correspond to it on the development 
of the lateral surface of the cone. But this development 
with the angle between the generatrix and the base equal 
to n/a and the radius of the base R represents a semicircle 
of radius 2R. Hence, the development of a frustum of -a eone is a semiannulus. Here, if to the arc BM on the 
base there corresponds a central angle <p, then on the 
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development, a central angle ~ (Fig. 50) will correspond 

to this arc. Consequently, 

I AM 1 2=4R2+4r2-8Rrcos ~ , 1 PrIC I =2rcos ~. 

It remains to prove that 

r----------------
y' 4R2+4r2-8Rrcos ~ + 2rcos ~ ~ 2R. 

This inequality is proved with the aid of obvious trans­
forma tions. 

249. Fix the quantities I a I, I b I, I c I, denote by 
x, y, and: the cosines of the respective angles between a 
and b, band e, e and a. 

Consider the difference between the left-hand and 
right-hand sides of the inequality in question. 

We get 

lal+l b l+lel 

+VI al2 +1 b 12+1 e 12+21 _1·1 b Ix+2l b i·1 e I y+2 i el·lal: 

-VI a 12+i b 12+21 a I·i b I x-VI b21+1 e 12+21 b 1·1 ely 

- V I c 12+ I a 12 + 21 e I . I a I : = f (x, y, I). 

Note that the function q>(t)=Vd+t-Vl+t= 
V~-V- is monotone with respect to t. This 

d+t+ l+t 
implies that f (x, y, :) reaches its least value when x, y, 
: are equal to +f, that is, when the vectors a, b, and e 
are collinear. In this case our inequality is readily 
verified. 

250. Let the straight line MN intersect DilCI at the 
point L. Set: I AM I = x, I BN I = y. It fo ows from 
the hypothesis that x > a, Y > a. Projecting all the 

. I fi d I CIL I a 
pomts on the pane ABBIAlt we n I LDI I = x-a ' 

and projecting them on the plane ABCD, we find : ~~~ ! = 
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y-a Consequently, a y-a, whence xy = 
a x-a a 

(x + y) a. But (x + y)2 > 4.xy. Hence, xy > 4.a2• 
Now, we get I MN 12 = x2 + yl + a2 = (x + y)2 -

2zy + a2 = (~)2 _ 2xy + a2 = ;2 (xy - a2)2 > 
9a2 • The least value of I MN I is equal to 3a. 

251. If x is the length of two other sides of the rec­
tangle, then the volume of the pyramid is equal to 
az .. / a2 %-3 V b2-T-'· The greatest value of the volume 

.. / 4b2-ai a (4.b2-a2) 
will be for x = fI 2 ' it equals f2 • 

252. Let M be a point on the line ABI , N on the line 
BCl , Ml and Nl. the respective projections of M and N 
on the plane ABCD. Setting I BMI I = z, I BNl I = y, 
we get 

I MINI I = V.zI+,l!l, I MN I = V xl!l+yl+(a-x-y)2. 

By the hypothesis, I MN I = 2 I MINI I, consequent­
ly, (a - 2 - ,)1 = 3 (:r + yS). Let :r + yl!l = ul , 

2 + y = v, then 2ul - uS ~ 0, and since ul =} (a-v)l, 

replaci1!K ul in the inequality relating u and v, we obtain 
the following inequality for v! VI + 4av - 2a2 < 0 
whence a (2 + VB) ~ v ~ a (V6 - 2). We now find 
the least value of I MN I, it is equal to 2a (Va - V2). 

253. Consider the cube ABCDAlBtClDI with an edge 
2R. Arrange the axes of the given cy inders on the lines 
AA 1 , DC, BICI• 

(a) The centre of the cube is at a distance of R V2 
from all the edges of the cube. Any point in space is 
located at a distance greater than R V2 from at least 
one of the e~s AAI, DC, BICp This follows from the 
fact that the cylinders with axes AA 1 , DC, BICI and radii 
R V2 have the only common point, the centre of the 
cube. Consequently, the radius of the smallest ball 
touching all the three cylinders is equal to R (V2 - f). 

(b) If K, L, and M are the respective midpoints of the 
edgel AA" DC, and BICl , then the straight line passing 
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through the centre of the cube perpendicular to the plane 
KLM is found at a distance of R y2 from the lines AAI, 
DC, and BIB; KLM is a regular triangle, its centre 
coincides with the centre of tiie cube. Hence it follows 
that any straight line intersecting the plane KLM is 
situated from at least one vertex of the triangle KLM 
at a distance not exceeding the radius of the circle circum-
scribed about it which is equal to R Y'2. Thus, the radius 
of the greatest cylinder touching the three given cylinders 
and satisfying the conditions of the problem is equal to 
R (Y2 - 1). 

254. Let ABCD be the tetrahedron of the greatest 
volume, 0 the centre of the given spheres. Each line seg­
ment joining 0 to the vertex of the tetrahedron must be 
perpendicular to the face opposite to this vertex. If, for 
instance, AO is not perpendicular to the plane BCD, 
then on the surface of the sphere on which the point A 
lies it is possible to find points lying at greater distar,.ces 
than the point A does. (This reasoning remains, obvious­
ly, true if A, B, C, and D lie on the surfaces of different 
spheres and even not necessarily concentric ones.) Hence 
it follows that the opposite edges of the tetrahedron ABCD 
are pairwise perpendicular. Let, further, the points A 
and B lie on the sphere of radius R = V 10, and C and D 
on the sphere of radius r = 2. Denote by x and y the re­
spective distances from 0 to AB and CD. 

Through AB, draw a section perpendicular to CD. 
Denote by K the point of intersection of this plane and 
CD. Taking into consideration the properties of our tet­
rahedron ABCD, it is easy to prove that I AK I = 
I BK I, 0 is the point of intersection of the altitudes 
of the triangle ABK. Draw the altitudes KL and AM 
(Fig. 51). From the similarity of the triangles A LO 

and OKM we find 10M I = X; . Further, I AB I = 
2 Y R2 - x2, and from the similarity of the triangles 
AOL and A MB we get 

R 

13-0449 

2 YR2_X2 

R ' xy -r­R 
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whence 2X2 + xy = R2. Proceeding in the same way, we 
get the equation 2y2 + zy = r. From tlie system of 
equations 

{ 2:&2.+ xy = fO, 
2y2+ Xy =4 

we find z = 2, y = f. The volume of the tetrahedron 
ABCD will be equal to 6 V2. 

A 

L~~------------~·K 

B 

Fig. 5f 

255. Let A denote the vertex of the trihedral angle 
whose plane angles are right angles, B the vertex of the 
other angle. On the line se~ent AB take a point M such 
that 2 1 AM 1 = 1 MB I. Through the point M pass 
a plane perpendicular to AB. This plane will cut each 
of the two trihedral angles in a regular triangle with side 

b = a V~ . In Fig. 52, a, the triangle PQR corresponds 

to the section of the trihedral angle with the vertex A. 
The face BCD cuts off the pyramid QF KL from the pyra­
mid APQR (the position of the point F is clear from 
Fig. 52, b). The volume of this pyramid is proportional 
to the product 1 QK I-I QL 1·1 QF I. Tb.e quantity 
I QF I, obviously, reaches the greatest value for a = n/3, 

/\. 
where a = CMQ. Let us prove that I KQ I-I QL I reache, 
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the greatest value .also for a = n/3. Since KL is tangent 
to the circle inscribed in PQR, the perimeter of the tri­
angle KQL is constant and is equal to b. We set I KQ I = 

Q 

Q 

------~----~-HA~--~~--~~----~T 

(b) 

Fig. 52 

x, I QL I = y,l'ZJ.then KL = b - x - y. Write the 
theorem of cosines for the triangle KQL: 

(b - x - y)2 = x2 + y2 - xy =} b2 - 2b (x + 1/) + 3xy 

= 0 =} b2 - 4b V xy + 3xy ~ o. 

C -w'- b -w'-onsequently, either J' xy ~ 3' .or J' xy > b. But 

b b -w'- b 1 ~ x < 2 and 0 ~ y ~ ""2 · Hence, J' xy ~ 3" · 

Equality is obtained if x = 1/ = ~ • 

Thus, the volume of the pyramid QKLF is the great-
b 4 .. /2 

est for a=n/3. Here, I KQ I = I QL I =3=3 V 3-
Further, for a=n/3, N is the midpoint of QM (Fig. 52, b). 
Drawing QT parallel to FB, we get I BT 1 = I MB I­
Thus, 

IAFI IABI 3 2 
IFQI=IBTI 2' IQFI=TIAQI. 

1'* 
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The volume of the pyramid APQR is found readily, 

it is equal to a3 5ra. Three pyramids equal to the pyra­

mid QFKL are cut off the pyramid APQR. 
1 1 2 2 

The volume of each of them amounts to 3"' "3. "5 =45 
the volume of the pyramid A PQ R. Thus, for a = n/3 
we get the "remainder" of the pyramid APQR, that is, 
a polyhedron having the volume 

as va (1-..!..) ._13a3 va 
54 15 -. 810 • 

Reasoning exac tly in the same manner, we get that 
for a=n/3 from the pyramid BCDE there will remain 
a polyhedron of the smallest volume~ and the volume 

of this polyhedron will be 11a;ta_ 
Adding the obtained volumes, we get the answer: 

a3 va 
20-

256. Setting I BD I = 2x, it is easy to find 

x I 1-2x' I V 3 '-4,x2 
V= V ABeD = 6 (i-x') . 

Making the substitution u = 1 - x2 , and then w = 
4u + 1/u, we get 

(6V)2= x' (1-2xl )' (3-4x2l) 

(1-x2)' 

(1-u) (2u-1)21 (4u-1) 
u' 

=(5-~-4u) (4u++-4) 
=(5-w) (w-4)= -w2l+9w-20. 
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The greatest value is attained for w = 9/2, wheJh'c 

-.,- .. / 9±Y17 
x = ... 1-u = V 1 - 16 . 

1 
Answer; the greatest value of V ABeD equals 12 • 

257. Let x denote the radius of the ball, V (x) the sum 
of the volume of the part of the ball situated outside the 
tetrahedron and the part of the tetrahedron outside the 
ball. It is easy to see that V' (x) = Sl (x) - S (x), 
where 81 (x) is the surface area of the part of the balf out­
side the tetrahedron, S2 (x) is the surface area of the part 
of the ball enclosed inside the tetrahedron. Minimum is 

1 .. /2 
reached for Sl (x) = S2 (x), whence x = a"3 V 3' 

258. Let a, b, c be the sides of the base, p = a+~+ c , 

r the radius of the inscribed circle, x, y, z the distances 
from the foot of the altitude of the pyramid to the sides 
a, b, c, and h the altitude of the pyramid. Then 

Slat=..!..a Yh2+X2 +...!.. b Yh2+y2 -+1- c Yh2+:2 • . , 2 2 2 

Note that the function I (x) = Yh2 + x2 is concave 
(convex downward). And for such functions the following 
inequality is valid: 

all (Xl) + a21 (X2) + . . . + anl(xn) 
> I (a1x1 + a 2x2 + ... + anxn), 
at > 0, i = 1, 2, ... , n, a1 + a2 + ... + an = 1 

Let us take advantage of this inequality. We get 

Slat= P (..!:.. Yh2+X2 +.!!.. Yh2+ y2 + ~ Yh2+:2) 2p 2p 2p 

,. ;-h2+ (..!:.. x+~ y+.!:.. :)2 JI 2p 2p 2p 
-----::-::---

.. /h2 ' S~ase _ -"h2+ 2 V --r 4p2 - p ... r , =p 

which was required to be proved. 
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259. If 0 is the centre of the circle, L is the projection 
of N on the plane of the base, then the point M must 
lie on the line se~ent LO since M is a point of the circle 
nearest to N. On the other hand, since N is a point of the 
diagonal of the face nearest to M, M N is perpendicular 
to this diagonal, and, hence, KN is also perpendicular 
to this diagonal, where K is the projection of M on the 
face containing this diagonal (Fig. 53). 

Fig. 53 

Let I AL I = ax, AN K is an isosceles right triangle, 
consequently, I LK I == I AL I == ax, 

I LK I ax 
I MK I = I OD I I LD 1= f-2x ' 

I KD I =T (f-4x). 

Writing the Pythagorean theorem for 6:. MOE (ME is 
parallel to AD), we get the following equations for x: 

(f-4x)2+ (~_ x )' _ 25 
4 2 f-2x -f44 

¢:> [6 (f-4z) (f-2z}1'+ [6 (f-4x)]'+ [5 (f-2x)1'. 



Answers, Hints, Solutions f99 

Making the substitution 5' = 3' + 4' in the right-hand 
side and transposing it to the left, we get 

[6 (f - 4x) (f - 2x)]' 
- [3 (f - 2X)]2 + [6 (f - 4X))2 - [4 (f - 2X)]2 = 0 

¢:> 9 (f - 2x)' (f - Sx) (3 - Sx) + 4 (5-f6x) (f -Sx) 

= 0 <::=> (f - Sx) [9 (f - 2X)2 (3 - Sx) 

+ 4 (5 - f6x)) = O. 

It is easy to see that the point K must lie to the left 
of the point D, that is, 0 < x < f/4, hence, the expres­
sion in the square brackets is not equal to zero, x = f/S. 

Answer. a V 34 . 24· 
260. (a) Let I SC I = d; a, b, and c the sides of the 

triangle ABC, ha' hb' he the altitudes of the triangle ABC, 
and s its area. Then 

Sl" n ,., = ha "R. hb " he 
v..,i ' slnp=,i ' slny=V . 

r~+~ r~+~ ~+~ 

Thus, we get for d the equation 

V~+b2 Vd'+a2 Vd'+h~ 
ha + hb = f + he . 

Multiplying this equation by 2s, we get 

a V ~+b'+b V ~+a2=2s+ V c2d2 +4s2 • (f) 

Multiplying and dividing both sides of (f) by the differ­
ences of the corresponding quantities (assuming that 
A A 

A =1= B), we get 
a2 _b2 c' 

a V d2+b2-b V d2+a2 - Vc2~+4s'-2s ' 

whence 

ac' V ~+bi-bc' V d2+a2=(a2 -b') (V c2d2+4s'-2s) 
(2) 
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Multiplying (t) by bl - al! and adding the result to (2), 
we obtain 

a (b2+c2-al ) Va2 +b2+b (b2-al -cl ) V d2+a2 

=4a (b2 -al ). 

With the aid of the theorems of cosines and sines, the 
last equation is transformed as follows 

(3) 

Transform the right-hand member of Equation (3) as 
follows: 

b2 -al 
2R = 2R (sinl! B - sin2 A) = 2R sin (A+B) sin (B-A), 

now, multiplying both sides of (3) by cos A • V d' + bl + 
cos B . V d' + a2 , we get the equation 

(cos2 A - cos2 B) d' + b2 cos2 A - al! cos2 B 
= 2R sin (A + B) sin (B - A) 

X (cos A • V d' + b2 + cos B • V d' + a2). (4) 

In Equation (4) we see cosl! A - cos2 B = 
sin (A + B) sin (B - A), b2 cosl! A - a2 cosl! B = 
4R2 sin (B + A) sin (B -A). Consequently, after reduc­
tion, Equation (4) is transformed to 

Adding (3) and (4'), we get 

,i . d2 
2 cos A· r d'+b2 = 2R + 2R (sinl! B + cos2 A), 
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whence 

(v' d2 +bl -2R cos A)2=0, 

d' = 4R2 (cos2 A - sin2 B) 

= 4R2 cos (A + B) cos (A - B). 

Thus, 

I SC I = 2R V cos (A + B) cos (A- B). 

20f 

The problem has a solution if A + B < 90°, that Is, in 
the triangle ABC the angle C is obtuse. 

(b) Let us take advantage of the notation used in 
I tem (a). Then our inequality is rewritten in the form 

If the angle C is acute, then the right-hand Side, as 
it follows from Item (a), is never equal to f, consequently, 
the inequality takes place, since it is fulfilled for d = O. 
And if C is an obtuse angle (or it is equal to 90°), then 
the right-hand side is equal to f for the unique value of 
d (if C is a right angle, then d = 0). But for d = 0 and 
sufficiently large values of d the inequality is obvioue 
(for large d's it follows from the triangle inequality), 
conseguently, if for some value of d the left-hand side 
were less than unity, then the left-hand side would take 
on the value equal to unity for two different values of d. 

261. Let ABCD be the given tetrahedron. On the edges 
BC and BD take points M and N and solve the following 
~roblem: for what position of the points M and N does 
the radius of the smallest circle enclosing the triangle 
AM N (we consider the circles lying in the plane AM N) 
reach the least value? (Obviously, the radius of the 
smallest hole cannot be less than this radius. For this 
purpose, it suffices to consider the instant of passing 
of the tetrahedron through the hole when two vertices 
of the tetrahedron are found on one side of the plane of 
the hole, the third vertex on the other Side, and tne fourth 
in the plane of the hole.) 

Suppose that the points M and N correspond to the 
desired triangle. Suppose that this triangfe is acute. 
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Then the smallest circle containing this triangle 
coincides with the circumscribed circle. Circumscribe 
a circle about the triangle AM N and consider the solid 
obtained by revolving the arc AMN of this circle about 
the chord AN. The straight line Be must be tangent to 
the surface of this solid. Otherwise, on Be we could take 
a point Ml such that the radius of the circle circumscribed 
about the trian~le AM IN would be less than the radius 
of the circle cIrcumscribed about the triangle AMN. 
The more so, Be must be tangent to the surface of the 
sphere passi g through A, M, and N having the centre 
in the plane AMN. The straight line BD must also touch 
this sphere exactly in the same manner. Consequently, 

BM 1 = 1 BN I. Set 1 BM 1 = 1 BN 1 = x. Let K 
denote the midpoint of MN, L the projection of B on the 
plane A MN (L lies on the extension of A K). The fore­
going implies that LM and LN are tangents to the circle 
circumscribed about the triangle AM N. This triangle is 
isosceles, 1 AMI = 1 AN 1 = V x2 - X + 1, 1 M N 1 = 

A 
x. If MAN = ct., then 

xl -2z+2 . x V3xt -4x-t-4 
cosa=2 (x l -x+1) , SIn a= 2 (x2-x+1) , 

Xl V3x2-4x+4 
I LK I = I MK I tan a= 2 (x2 -2.1:+2) • 

Consider the triangle AKB, AK'B = ~ > 180°; 
&-2 

cos ~= , I LK I = - 1 KB 1 cos ~ = 
V3 (3x8-4x+4) 

; (2-3x) • Equating two expressions for I LK 1, 
2 3.1:2-4x+4 
we get for x, after simplifications, the equation 

3x2 - 6x2 + 7x - 2 = o. (i) 

The radius of the circle circumscribed about the triangle 
AMN, will be 

x2-x+1 
R= V3z2 -4z+4 · 
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(It is possible to show that if AM N is a right triangle, 
then its hypotenuse is not less than V f5 - fa -y2 > 
0.9.) Let us show that our tetrahedron can go through 
the hole of the found radius. 

On the edges CB and CA mark points Land P such 
that 1 CL 1 = 1 CP 1 = 1 BM 1 = 1 BN 1 = x, where x 
satisfies the equation (f). 

Place the tetrahedron on the plane containing the 
given hole so that M and N are found on the boundary of 
the hole. We will rotate the tetrahedron about the line MN 
until the edge AB, passing the hole, becomes parallel 
to our plane. Then, retaining AB parallel to this plane, 
we displace the tetrahedron ABCD so that the points P 
and L get on the boundary of the hole. And, finally, we 
shall rotate the tetrahedron about PL until the edge DC 
goes out from the hole. (The tetrahedron will turn out 
to be situated on the other side of our plane, the face ABC 
lying in this plane.) 

A nswer: the radius of the smallest hole R = 
x2 - X + f h . h f h . -y , w ere x IS t e root 0 t e equation 
3xS-4x+4 

3x3 - 6x2 + 7x - 2 = O. The relevant computations 
yield the following approximate values: x ~ 0.39f3, 
R ~ 0.4478 with an error not exceeding 0.00005. 

Section 4 
262. Let S denote the vertex of the angle. Take points 

A, B, and C on the edges such that 1 SA 1 = 1 SB i = 
1 SC I. The bisectors of the angles ASB and BSC 
pass through the midpoints of the line segments AB and 
BC, while the bisector of the angle adjacent to the angle 
CSA is rarallel to CA. 

- f - f 
264. , if --- is not a whole number, 

2 • a 2' a 
SIn~ SIn ~ 

1 =f, if - f is a whole number, where [%1 
2' a 2. tx 1m 2 SlOT 

is an integral part of z. 
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265. We shall regard the given lines as the coordinate 
axes. Let the straight line make angles a, ~, and y with 

--+ ~ 
these axes. Then the projections of the vectors OA 1, OBI' 

and Oc1 on the axes OA, OB, and OC will be respectively 
equal to a cos 2a, a cos 2~, and a cos 2y, a = 1 OA I. Con­
sequently, the point M of intersection of the planes pass­
ing through Al.' B I , and CI respectively perpendicular 
to OA, OB, and OC will have the coordinates (a cos 2a, 
a cos 2~, and a cos 2y). The set of points with the coor­
dinates (cos2 a, cos'~, and cos2 y) is a triangle with 
vertices at the end points of the unit vectors of the axes. 
Consequently, the sought-for locus of points is also 
a triangle whose vertices have the coordinates (-a, -a, 
a); (-a, a, -a); (a, -a, -a). 

266. Denote the gJven lines by It and l,. Through II 
pass a ~lane PI parallel to la, and through l2 a plane P2 
parallel to '1' I t is obvious that the midpoints of the 
line segments with the end points on II and l2 belong to 
the pI.a:ne P parallel to PI and P2 and equidistant from E 
and P2' (It is possible to show that if we consider ad 
kinds of such line segments, then their midpoints will 
entirely fill up the plane p.) Project now these line seg­
ments on the plane p parallel to the given plane. Now, 
their end points will be on two straight lines which are 
the projections of the lines II and l2.1 and the projections 
themselves will turn out to be parallel to the given line 
of the plane p representing the line of intersection of the 
plane P and the given plane. Hence it follows that the 
required locus of I'oints is a straight line. 

267. (a) The whole space. 
(b) Proceeding exactly in the same way as in Prob­

lem 266, we can prove that the locus of points dividing 
in a given ratio all possible line segments parallel to 
the given plane with the end points on the given skew 
lines is a straight line. ApplylOg this statement twice 
(first, find the locus of midpoints of sides AB, and then 
the locus of centres of gravity of triangles ABC), prove 
that in this case the locus of centres of gravity of triangles 
ABC is a straight line. 

268. Through the common perpendicular to the 
straight lines, pass a plane p perpendIcular to '3' Let the 
line N M intersect l3 at point L; N1 , Mu Ll be the re­
spective points of intersection of the lines ll' l2' l3 with 
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the common perpendicular, N 2' M 2 the projections 0 r N 
and M on the passed plane, ct and ~ the angles made by 
the lines 11 and 12 wlth this plane, K the midpoint of 

Nt 

Fig. 54 

N M, K],. and K2 the projections of K on the common per­
pendicular and on the plane p (Fig. 54). We have 

1 KK2 I 1 NN2 1 + 1 MM2 1 
1 KlK21 1 N2Nl 1 +1 M2Mli 

. 1 N2Nl 1 tan ct+ 1 M2Ml 1 tan ~ 
1 NlNl 1 + 1 M2Ml ! 

__ 1 NlLl 1 tanct+ 1 MILl 1 tan~ - t 
- 1 MILl 1 +1 MILl 1 -cons, 

hence, the point K describes a straight line. 
269. Let us introduce a rectangular coordinate system, 

choOSing the origin at the point A. Let el (tit, bl , Cl)' 

e~ (a2, b2, C2)' •.. , en (an' bn, cn) be unit vectors J)ar­
allel to the given lines, e (x, y, z) a unit vector parallel 
to the line satisfying the conditions of the problem. Thus, 
we get for e the following equation 

I alx + bly + ClZ I + I azx + b2y + CZZ I -t- ••• 
+ I anx + bny + cnz I = const. 
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I t is now easily seen tha t the locus of termini of the 
vector e will be the set of circles or parts thereof situated 
on the surface of the unit sphere with centre at A. 

270. Place equal loads at the points A, B, C, AI' 
BI , and C\. Then the centre of gravity of the obtained 
system of loads will coincide with the centre of gravity 
of the triangle with vertices at the midpoints of the line 
segments AA I , BB I , CCI -

On the other hand, the centre of gravity of this system 
coincides with the midpoint of the line segment GH, 
where G is the centre of gravity of the triangle ABC, 
H the centre of gravity of the three loads found at AH 
B I , and CI • 

With a change in AI' B I , and CI the point H mov~s 
in the straight line I, and the point G remains fixed. 
Hence, the point M, which is the midpoint of GH, will 
describe a straight line parallel to I. 

271.. Through A draw a straight line t parallel to I. 
The sought-for locus of points represents a cylindrical 
surface, except for I and t, in which I and t are diametri­
cally opposite elements. 

272. Let us first prove that if the line M K is tangent 
to the sphere ~, then it is also tangent to the sphere ct. 

cv 

(<<, (0) 

Fig. 55 

Consider the section of the given spheres by the plane 
passing throu~h points M, K, A, B, and N (Fig. 55). The 
ana-Ie M KB II measured by half the arc KB enclosed 
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/ '\. /'\. 
inside this angle, consequently, M KB = BAN, since 
the angle measures of the arcs KB and BN are equal (we 
take the arcs situated on different sides of the line KN 
if the tangency is external (Fig. 55, a) and situated on 
one side if the tangency is internal (Fig. 55, b)). Hence 

/ '\. /'\. /'\. /'\. 
it follows that AMK = ABN or AMK = 1800 - ABN, 

/'\. -
and this means that AM K is measured by half AM, since 
the corresponding arcs AM and AN have the same angle 
measure, that is, M K touches the circle along which the 
considered section cuts the sphere ct. 

It is now possible to prove that the locus or points M 
is a circle. 

273. Let A and B denote the given points, C the point 
of intersection of the line AlJ with the given plane, M 
the point of tangency of a baH with the plane. Since 
I CM 12 = I CA 1·1 ClJ I, M lies on the circle with 
centre at the point C and radius Y I CA 1'1 ClJ I. Con­
sequently, the centre of the sphere belongs to the lateral 
surface of the right cylinder whose base is this circle. On 
the other hand, the centre of the sphere belongs to the 
plane passing through the midpoint of A B perpendicular 
to AB. Thus, the sought-for locus of points IS the line 
of intersection of the lateral surface of a cylinder and 
a plane (this line is called the eUipse). 

274. ))enote by Olt O~ and Rlt R, the centres and 
radii of the given spheres, respectively; M is the midpoint 
of a common tangent. Then, it is easy to see that 

101M 12 - I O~M 12 = R~ - Ri, 

and, consequently, M lies in the plane perpendicular to 
the line segment 010. and cutting this segment at a 
po in t N such that 

lOIN 12 - I o.,.N 12 = Rf - Ri. 

Let us see what is the range of variation of the quan­
tity I N M I. Let I 010~ I = a and Rl > R.,., then 

lOIN 1= ~ (Rr:R~ +a) . 
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If 2x is the length of the common tan~nt, whose mid­
point is M, then 

1 MN 12= 101M 12_1 OIN 12 =x2+Rf 

_! (R~ -: Ri + a ) • 

Now, if a ~ Rl + R 2, then the quantity 4x2 changes 
within the interval from a2 - (R1 + R2)2 to a2 - (R 1 -

R9.)2, and, hence, in this case the locus of points M 
wul be an annulus whose plane is perpendicular to 
0 10 2 , and the centro is found at the point N, the inner 
radius is equal to 

1- (R -R) .. ;-1- (R1 +R2)2 
2 1 2 V a2 ' 

and the outer to 

1-(R +R) 1,/' 1- (R1-R2 )" 
2 1 2 Y a2· 

And if a < RI + R , that is, the spheres intersect, then 
the inner radius of t~e annulus will be equal to the radius 
of the circle of their intersection, that is, it will be 

1 
2a V(a+R1+R2) (a+R1-R2) (a+R2-R1) (R1+R2-a). 

275. Denote by A and B the points of tangency of the 
lines 11 and '2 with the sphere, and by K the point of tan­
gency of the line MN with the sphere. We will have 

I AM I = I MK I, I BN I = I NK I. 

Project II and ls on the plane perpendicular to AB. Let AIt 
MIt NIt and K1 denote the respective projections of tlie 
points A (and also B), M, N, and K. ObViously, 

i A1M1 I I A1N1 1 
1 AM 1 =p, 1 BN 1 =q, 

where p and q are constants. Let now d and h be the dis­
tances from K1 to the straight lines A1M1 and A1N1. 



Answers, Hints, Solutions 

We have 

i 
d """'2' i AIMII d 

T= i 
"""2 1 AINI 1 h 

I A1N I ! S A1M1Kl 

\ AIMI \ -- S A1N1Kl 

1 MIKI 1 1 AINI I 1 MK 1 - • ~-=---=-=--7'"" 
- 1 NIKI 1 I AIMI liNK 1 

I AM 1 1 Al NIl q - . ---I AIMI t 1 BN 1 - p • 
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Thus, the ratio of the distances from the point KI to 
two given straight lines in the plane is constant. This 
means that the point KI belongs to one of the two straight 
lines passing through the point Al: And the sought-for 
locus of points represents two circles on the surface of 
the given sphere. These circles are obtained when the 
sphere is cut by two planes passing through the lines de­
scribed by the point KJ. and the straight line AB. The 
points A and B themselves are excluded. 

279. Let BK denote the altitude of the triangle ABC, 
H the point of intersection of the altitudes of the tri­
angle ABC, BM the altitude of the triangle DBC, N the 
point of intersection of the altitudes in the triangle DBC. 
Prove that N is the projection of the point H on the 
plane DBC. 

Indeed, KM is perpendicular to DC, since BM is 
perpendicular to DC, and KM is the projection of BM 
on the plane ADC. Thus, the plane KMB is pe~endicular 
to the ed~ DC, consequently, UN is perpendicular to DC. 
Exactly In the same way, HN is perpendicular to the 
edge DB. Hence, HN is perpendicular to the plane DBC. 
I t is not difficult to prove now, that N lies in the plane 
passing through AD perpendicular to BC. 

The required locus of points refresents a circle with 
diameter H L, where L is the foot 0 the altitude dropped 
from A on BC whose plane is perpendicular to the plane 
ABC. 

283. Denote by P and Q the points of intersection of 
the opposite sides of the quadrilateral ABCD. If the 
section by the plane of the lateral surface of the pyra­
mid ABCDM is a parallelogram, then the plane of the 

1,-0"9 
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section must be parallel to the plane PQM, the sides of 
the parallelogram being parallel to the straight lines PM 
and QM. Hence, in order for a section to 00 a rectangle, 
the angle P MQ must be equal to 90°, that is, M lies on the 
surface of the sphere with diameter PQ. (Thus, Item (a) 
has been solved.) 

(b) Denote by K and L the points of intersection of the 
diagonals of the quadrilateral ABCD and the straight 
line PQ. Since the diagonals of the parallelogram obtained 
by cutting the lateral surface of the pyramid ABCD M 
by a plane will be parallel to the lines M K and ML, 

/"'" this parallelogram will be a rhombus if KM L = 90°, 
that is, M lies on the surface of a sphere with diameter KL. 

(c) Items (a) and (b) imply that the locus of points M 
will be a circle which is the intersection of two spheres 
of diameters PQ and KL. 

(d) The locus of points is a conical surface with vertex 
at the point of intersection of the diagonals of the quadri­
lateral ABCD whose directing curve is a circle from the 
preceding item. 

284. If K and L are the midpoints of BC and AM, ° 
the centre of the sphere circumscribed about ABCM, 
then, since G is the midpoint of LK and OG is perpen­
dicular to LK, I OL 1 = I OK I. Hence it follows that 
I A M I = I BC I, that is, M lies on the surface of the 
sphere of radius BC centred at A. 

Let, further, N be the centre of gravity of the tri­
angle ABC, 0 1 the centre of the circle circumscribed about 
the triangle ABC, G1 the projection of G on the j)lane 
ABC. Since, by the hypothesis, OG is perpendicular to 
AK,01G1 isalsoperpendiculartoAK.Hence, G lies in the 
plane passing through 0 1 and perpendicular to A K. 
Hence, since 

INGI =i-INMI, 
it follows that the point M also lies in the plane per .. 
pendicular to A K. 

Thus, the sought-for locus of points represents the 
line of intersection of a sphere and a plane, that is, 
generally speaking, is a circle. 

285. Introduce a rectangular Cartesian coordinate 
system taking for ° the vertex of the trihedral an~le and 
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directing the axes along the edges of this angle. Let the 
plane of the circle make angles a, ~, and y with the coor­
dinate planes XOY, YOZ, and ZOX, resrectively. Then 
the point 0 1 (the centre of the circle) wi! have the coor­
dinates (R sin ~, R sin y, R sin a), where R is the radius 
of the circle. From the origin draw a straight line per­
pendicular to the plane of the circle. This line will make 
angles ~, y, and a with the coordinate axes. Consequently, 

cosl! a + cos2 ~ + cos2 Y = 1 

and, hence t 

Thus, the point 0 1 lies on the surface of the sphere with 
centre at 0 and radius R Y2. On the other hand, the 
distance from 0 1 to the coordinate planes does not ex­
ceed R. 

Consequently, the sought-for set represents a spherical 
triangle tiounded by the planes x = R, y = R, , = R 
on the surface of the sphere I 001 I = R Y2, situated 
in the first octant. 

286. Let the spider be found in the vertex A of the 
cube ABCDAlBlClDl . Consider the triangle DCCI • It 
is rather easy to prove that the shortest path joining A 
to any point inside the triangle DCCI intersects the edge 
DC. In this case, if the faces ABCD and DCClDl are 
"developed" so as to get a rectangle made from two squares 
ABCD and DCClDu then the shortest path will repre­
sent a segment of a straight line. Consequently, the arc 
of a circle with radius of 2 cm whose centre is found at 
the point A of the development si tua ted inside the tri­
angle DCCI will be part of the boundary of the sought­
for locus of points. The entire boundary consists of six 
such arcs and separates the surface of the cube into two 
parts. The part which contains the vertex A together 
with the boundary is just the required locus of points. 

287. We take the edges of the trihedral angle for the 
coordinate axes. Let (x, y, ,) be the coordinates of the 

~ 
vector OA, (Xi' Yi' 'i) the coordinates of the ith section 

U· 
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of the polygonal line. Each section of the polygonal line 
is regarded as a vector. Then 

z = ~ Xi' H = ~ Hi' % = ~ zit 

here, the conditions of thelroblem imply that all the Xi 

are different from zero an have a si~ coinciding witli 
that of X (the same is true for Yi and Ii). Obviously, 
1 OA 1 < a. On the other hand, 

1 X 1 + 1 H 1 + 1 % 1 = ~ (I Xi 1 + 1 Yi 1 + 1 %i I) 

:;;:, ~ Ii = a 

(Ii is the length of the ith section of the polygonallin&). 
It can be readily shown that any point A satisfying 

the conditions 1 OA 1 ~ a, 1 z 1 + 1 H 1 + 1 % 1 > at 
where :IJ, H, % are the coord ina tes of the point A, can be 
the end point of a polygonal line consisting of not more 
than three sections and satisfying the conditions of the 
problem. Let, for instance, Ml and M, be two points 
lying on one straight line emanating from the point 0 
such that 1 Xl 1 + 1 111 1 + 1 -"1 1 = a, XlYl%l =1= 0 (Xl' HIt 
%1 the coordinates of the point M l ), 10M. l = a. Con­
sider the polygonal line with vertices (0, 0, 0), (Xl' 0, O)t 
(Xl' Yu 0), (Xl' y)t st). The length of this polygonal line 
is equal to a. '~tretching' this line, we get all points 
of the line segment MlM, (excluding MIl. Thus t the 
desired locus of points consists of all points ying outside 
the octahedron 1 z 1 + 1 11 1 + 1 % 1 = a and inside or 
on the surface of the sphere with centre 0 and radius a. 
In this case, the points situated in the coordinate planes 
are excluded. 

288. First of all note that if r is the radius of the ball 
inscribed in ABCD, then, firstly, all the edges of the 
tetrahedron ABCD are longer than 2r and, secondly, the 
radius of the circle inscribed in any face of the tetra­
hedron is greater than r. The first assertion is obvious. 
To prove the second assertion t through the centre of the 
inscribed ball, passa plane parallel, say, to the face ABC. 
The section cut is a triangle AlBICl similar to the tri­
angle ABC with the ratio of simi itude less than unity 
and containing inside itself a circle of radius r. 

(t) The condition determining the set of points A 
will be expressed by the inequality lOA 1 > 3r, the 
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equality I OA I = 3r being true for a regular tetrahedron. 
If for some point A the inequality I OA I < 3r were 
fulfilled, then the radius of the smallest ball containing 
the tetrahedron ABCD would be less than 3r, which is 
impossible (see Problem 246). 

(2) The condition determining the set of points B 
will be expressed by the inequality I OB I > r Y5. In­
deed, if for some point B the inequality I OB I < r VS 
were fulfilled, then for the triangle DBC the radius of 
the circle containing this triangle would be not greater 
than Y5r2 - r2 = 2r, that is, the radius of the circle 
inscribed in the triangle DBC would not exceed r, which 
is impossible. 

(3) The condition determining the set of points C is 
expressed by the inequality I OC I > r vi. Indeed, if 
I oc I ~ r Y2, then I CD I ~ 2r. 

(4) The condition determining the set of points D 
will be expressed by the inequality I OD I > r. 

Let us show that I OD I can be arbitrarily large. To 
this effect, for the tetrahedron ABCD take a tetrahedron 
all faces of which are congruent isosceles triangles having 
sufficiently small vertex angles. Then the centres of the 
inscribed and circumscribed balls will coincide, and the 

ratio !!:.... , where R is the radius of tho circumscribed ball, 
r 

can be arbitrarily large. 
289. If MC is the hypotenuse of the appropriate tri­

angle, then the equality I MC 12 = I M A 12 + I MB 12 
must be fulfilled. Introducing a rectangular Cartesian 
coordinate system, it is easy to make sure that the 
point M must describe the surface of a sphere. Find the 
centre and radius of this sphere. 

Let Cl be the midpoint of AB, C2 lie on the extension 
of CClt I ClC~ I = I CCI I (A CBC2 is a parallelogram). 
Denote the sides of the triangle ABC, as usual t by a, b, 
and c, the median to the side AB by me' We snaIl have 

I MA 11 + I MB 121 =21 MCl 12+ I A~ II - 2IMClr2+~I. 
Since 

I MA 12 + I MB 12 = I Me 12, 
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we get 
2 

1 Me 12_21 MC l 12= -To (1) 

./'-.. 
Let MC2C = cp, write for the triangles MC2C and MC2Cl 
the theorem of cosines: 

I MC 12 = I MC2 I' + 4m~ - 4 I MC2 I me cos cp, (2) 

I MC l 12 = I MC2 12 + ~ - 2 I MC. I me cos cp. (3) 

Multiplying (3) by 2 and subtracting the result from (2), 
we get (tai{ing into account (1)) 

c2 
I MC 2 12 = 2m~ - 2" = a2 + b2 - c2 • 

Thus, for this case the set of l'0ints M will be non­
empty if a2 + b2 - c2 > 0, that IS, the angle C in the 
trian~le ABC is not obtuse. Consequently, the whole set 
of pOInts M for an acute-angled triangle consists of three 
spJieres whose centres are found at the points C , A2 
and B2 such that CACJ], ABA 2C, BCBiA are para~lelo-
grams, the radii being respectively equal to Va i + b2 _c2 , 

Vb2 + c2 - a2 , and Va2 + c2-b2• For the right-angled 
triangle ABC the sought-for set consists of two spheres 
and a point, and for an obtuse-angled triangle of two 
spheres. 

290. Let 0 denote the centre of the Earth, A the point 
on the equator corresponding to zero meridian, M the 
poin t on the surface of the Earth with longitude and la ti­
tude equal to cp, N the projection of M on the plane of 
the equator. IntrodUcing a rectangular Cartesian coordi­
nate system in the plane of the equator, taking the line 
OA for the x-axis, and the origin at the point 0, we get 
tha t N has the following coordinates: x = R cos2 g>, 
Y = R cos cp sin cp, where R is the radius of the Earth. 
It is easy to check that the coordinates of the point N 
satisfy the equation 

( R )2 R2 
X- 2 +y2=T' 

I.e. the sought-for set is a circle with centre ( ~ , 0) 
and radius R /2. 
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291. Introduce the following notation: S is the vertex 
of the cone, N the projection of the point M on the plane 
passing through the points S and A parallel to the base 
of the cone, P a point on the straight line SN such that 
/" S M P = 900 (Fig. 56), M P is a normal to the surface 

____ -----9~------__ A 

Fig. 56 

of the cone. It follows from the hypothesis that A P is 
/" /" parallel to the renected ray. Hence AMP = MPA, 

1 A M I = 1 A P I. Let CG be the angle between the altitude 
and generatrix of the cone 1 SA I = a. The plane passing 
through M parallel to the plane SPA cuts the axis of the 
cone at the point SIt Al is the projection of A on this 
plane, 

~ 
I SSI 1 = X, MSIA I = cP, 1 MAli = y. 

By the theorem of cosines for the triangle SIMA It we have 

y2 = x2 tan2 CG + a2 - 2ax tan CG cos cp. 

Besides, 

1 PA 12 = 1 M A 12 = y2 + x2, 

1 sP 1 = 1 ~M 1 x 
sIn CG cos CG sin CG sin 2a • 

(1) 

(2) 

(i\) 
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Writing the theorem of cosines for the triangle SPA 
and using the above relationships, we have 

4z' 4ax 
x' tan' a-2ax tan a cos cp+x2 = sin2 2a sin 2a cos cp, 

whence x = a sin 2a cos cp. 
If now we erect a perpendicular to SN at the point N 

in the plane SPA and denote by L the point of its inter­
section with SA, then 

I SL 1= I SN 1= xtana 2asin'a. 
cos cp cos cp 

Thus, I SL 1 is constant, consequently, the point N 
describes a circle with diameter SL. 

292. When solving this problem, we shall need the 
following statements from plane geometry. 

If in a circle of radius R through a point P found at 
a distance d from its centre two mutually perpendicular 
chords AD and BE are drawn, then 

(a) I AD 12 + I BE 12 = 8R2 - 4cl', 

(b) the perpendicular dropped from P on AB bisects 
the chord DE. 

For a three-dimensional case, these two statements are 
generalized in the following way. 

If through a point P found inside a ball of radius R 
centred at 0 three mutually perpendicular chords AD, 
BE, and CF are drawn at a distance d from its centre, then 

(a*) I AD 12 + I BE 12 + I CF 12 = 12R2 - 8ell, 
(b*) a straight line passing through P perpendicular 

to the plane ABC passes through the median point of the 
triangle DEF. 

Let usprove Item (a*). Let Ru R 2 , R3 denote the radii 
of the circles circumscribed respectively about the quadri­
laterals ABDE, ACDF, and BCEF, du d2 , dt the distances 
in these quadrilaterals from the centres 0 the cireumw 

scribed circles to the point P, and x, y, :I the respective 
distances from the point 0 to the planes of these quadri­
laterals. Then ,xl + y2 + Z2 = rP, d¥ + ~ + d§ = 
2 (xli + y2 + r) = 2rP, Ri + R~ + R~ = 3R2 - rP. 
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Thus, taking advantage of the statement of Item (a), 
we get 

I AD !2+ I BE 12+ I CF 1 2=+ [( I AD 12+ I BE Ii) 

+( I BE 1 2+ I CF 1 2)+( I CF li+ I AD li)1 

= ; (8Ri-4di+8Rf-4d~+8R!-4d:) 
= 12RI-8d2 • 

To prove I tern (b*), project the drawn line on the 
planes of the quadrilaterals ABDE, ACDF, and BCEF, 
and then take advantage of Item (b). 

Now, let us pass to the statement of our problem. On 
the line segments PA, PB, and PC construct a parallel­
epiped and denote by M the vertex of this parallelepiped 
opposite the f,0int P. 

Analogous y, determine the point N for the line seg­
ments PD, PE, and PF. K is the point of intersection 
of PM with the plane ABC, 0 the midpoint of PM, T 
the midpoint of PN, 0 1 the centre of tlie circle circum­
scribed about the triangle ABC, and H the foot of the 
perpendicular dropped from P on ABC. 

It follows from Item (b*) that H lies on the straight 
line N P. Further, K is the point of intersection of the 

medians of the triangle ABC, 1 P K I = ~ I PM I. The 

straight line 00 is perpendicular to the plane ABC and 
passes through the point 0 1 , since 0 and 0 are the centres 
of two spheres passing through the points A, B, and C. 
(Note that we have proved simultaneously that the 
points 01, K, andHarecollinearand 1 KH 1 = 21 01K I. 
As is known, this straight line is called the Euler line.) 

Thus, 00 is parallel to NP, the same as TO is parallel 
to MP. Hence, 0 is the midpoint of NM. 

On the line segment OP take a point S such that 

1 PS I = ! I PO I. The perpendicular dropped from S 

on KH passes through the midpoint of KH. Consequently, 
1 SK 1 = 1 SH I. But SK 110M, 

1 1 
I SK I ="31 OM 1=6 1 NMI. 
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It follows from Item (a*) that ! N AI 12 == 12R2- 8d2 
(N M is the diagonal of the parallelepiped whose edges are 
equal to I AD I, I BE I, I CF I), that is I SK I = 

~ V3R2 _U2 is a quantity independent of the way 

in which the line segments PA, PB, PC were drawn. 
293. Denote by a, b, and c the unit vectors directed 

• --+-
along the edges of the trIhedral angle, let, further, ON = 

--+- -+-
e, P the centre of the sphere, OP = u, OA = xa, 
--+-- -+-
OB = yb, OC = %c. 

The points 0, N, A, B, and C belong to one and 
the same sphere with centre at P. Thi.s means that 

(u - e)2 = u2, (xa - U)2 = u2, 

(yb - U)2 = u 2, (zc - U)2 = u 2 , 

whence 

e2 -2eu = 0, 

x-2au=O. 

y-2bu=O, 
%-2cu=0. 

(1) 

Let e = aa + ~b + yc. Multiplying the second, third, 
and fourth equations of System (1) respectively by a, ~, 
and 'V and subtracting from the first, we obtain 

e2 - ax - ~y - 'V% = O. (2) 

If M is the centre of gravity of the triangle ABC, then 
~ 1 -+ --}to- --+- 1 
OM=s(OA+OB+OC)=3 (xa+yb+zc). 

Taking into consideration Equation (2), we may conclude 
that the locus of points M is a plane. 

294. Prove that each of these planes passes through 
the point symmetric to the point N with respect to the 
centre of gravity of the tetrahedron. 

295. Prove that all these flanes pass through the point 
'ijymmetric to the centre 0 the sphere circumscribed 
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about the tetrahedron with respect to its centre of 
gravity. 

296. When solving Problem 295, we proved that 
Monge's point is symmetric to the centre of the sphere 
circumscribed about the tetrahedron with respect to the 
centre of gravity of the tetrahedron. Consequently, if 
Monge's point belongs to the plane of some face of the 
tetrahedron, then the centre of the circumscribed sphere 
is situated from this face at a distance equal to half 
the length of the corresponding altitude and is located 
on the same side of the face on which the tetrahedron 
itself lies. This readily leads to the statement of our 
problem. 

297. Take advantage of the equality 

1 M A 12 + 1 M B 12 = 4 I M D 1 ~ + 1 AB 12 , 

where D is the midpoint of AB, and also by the fact that 
in an arbitrary tetrahedron the Sum of the squares of its 
opposite edges is equal to twice the sum of the squares of 
the distances between the midpoints of two pairs of its 
remaining edges (see Problem 21). 

298. Denote the areas of the faces of the tetrahedron 
by S1' S'4' S3, S4 and the volume of the tetrahedron by V. 
If r is the radius of the sphere touching all the planes 
forming the tetrahedron, then, with the signs of 8\, = 
+1, i = 1, 2, 3, 4, properly chosen, the equa ity 

r 
(81S 1 + 82S 2 + 83S 3 + 84S 4)3 = V must be fulfilled. 

I n this caSe if for a given set 8i the value of r determined 
by the last equality is positive, then the corresponding 
ball exists. 

Thus, in an arbitrary tetrahedron there always exists 
one inscribed ball (8i = +1) and four externally inscribed 
balls (one 8i = -1, the remaining ones +1), that is, 
four such balls each of which has the centre outside the 
tetrahedron and touches one of its faces at an interior 
point of this face. 

Further, obviously, if for some choice of 8i there 
exists a ball, then for an opposite set ei there exists no 
ball. This means that there are at most eight balls. There 
will be exactly eight balls if the sum of the areas of any 
two faces is not equal to the sum of the areas of two others. 
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299. For any two neighbouring sides of the quadri­
lateral there are two planes equidistant from them (the 
bisector planes of the angle of the quadrilateral itself and 
the angle adjacent to it). In this case, if three such planes 
corresponding to three vertices of the quadrilateral inter­
sect at a certain point, then through this point there 
passes one of the two bisector planes of the fourth veI1ex. 
Thus, when finding the points equidistant from the lines 
forming the quadrilateral, it suffices to consider the bi­
sector planes of three angles of this quadrilateral. Since 
two planes correspond to each vertex, there will be, 
generally speaking, eiEht points of intersection. 

It remains to find out under what conditions some 
three such planes do not intersect. Since our quadrilateral 
is three-dimensional, no two bisector flanes are parallel. 
Hence, there remains the possibility 0 one bisector plane 
to be parallel to the line of intersection of two others. 
And this means that if, through some point in space, 
three planes are passed \larallel to the given ones, then 
these three planes will Intersect along a straight line. 

Let, for the sake of definiteness, the bisector planes 
of the three interior angles of the quadrilateral ABCD 

C 

Fig. 57 

not intersect. Through the vertex C, draw straight lines 
parallel to the sides AB and AD (Fig. 57) and on these 
lines layoff line segments CP and CQ, I C P I = I CQ I. 
Layoff equal line segments CM and CN on the sides CB 
and CD. 

The aforegoing reasoning imply that the bisector 
planes of the angles MCP, PCQ, QCN, and NCM inter­
sect along a straight line and, hence, all the points of 
this line are equidistant from the straight lines CP, CQ, 
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CN, CM, that is, the lines CP, CQ, CN, and CM lie 
on the surface of the cone, and PQNM is an inscribed 
quadrilateral. Let the plane of the quadrilateral PQNM 
intersect AB and AD at points Land K. The line LK is 
paralle to QP, and this means that NMLK is also an 
inscribed quadrilateral. Besides, it is easily seen that 

1 LB 1 = I MB I, 1 KD 1 = I DN I, 1 KA I = I AL I. 
Hence, in particular, it follows that I AB I + I DC 1 = 
I AD 1 + 1 BC I· 

Let now 0 denote the centre of the circle circumscribed 
abollt the quadrilateral KLMN. The congruence of the 
triangles LOB and MOB implies that 0 is equidistant 
from the lines AB and BC. Proceeding in the same way, 
we will show that 0 is equidistant from all the lines form­
ing the quadrilateral ABCD, that is, 0 is the centre 
of the ball touching the straight lines AB, BC, CD, and 
DA. Other cases are considered exactly in the same manner 
to obtain analogous relationships among the sides of 
ABCD: I AB I + I AD I = I CD I + I CB I, I AB 1 + 
I BC I = 1 AD I + I DC I. It is not difficult to show 
that the indicated relationships among the sides of the 
quadrilateral ABCD are the necessary and sufficient con­
ditions for the existence of infinitely many balls touching 
the sides of the quadrilateral. In all remaining cases 
there are exactly eight such balls. 

300. Using the formula of Problem 11 for the volume 
of the tetrahedron, prove that each of the relationships 
under consideration is equal to 4S~i;,S4, where SI' S2' 

Sa, S4 are the areas of the faces of the tetrahedron, V its 
volume. 

301. If hi (i = 1, 2, 3, 4) is the altitude of the cor­
responding face of the tetrahedron, then 

1 V 1 4 1 Vi 4 l~-R~ _ _ '" S2 (l2_R2) __ _ '" S2h2 t 1. 
3 2 ~ iii -- 3 2 ~ i i h~ 

. 1 • 1 1. 1= 1.= 

l~--R~ 
1. t 

M 
t 

• 
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If now di is the distance from the centre of the circum 
scribed ball to the ith face (R is the radius of this ball), 
then 

l1- R 1= (l~-hV-(R2-dV+hi 

= (R2- (hi-di)2] - (R2_d1)-+ hi= 2hidi' 

Thus, we get the following radicand: 

'" ~=1 L.J hi 

(see Problem 182), which was required to be proved. 
(We assumed that the centre of the circumscrined ball 

lies inside the tetrahedron. If the centre is found out­
side it, proceed in the same way regarding one of the 
quantities di as being negative.) 

302. Denote the lengths of the edges of the tetrahed­
ron ABCD as is shown in Fig. 58, a. Through the vertex A 
pass a plane tangent to the ball circumscribed about the 
tetrahedron ABCD. The tetrahedron ABCIDI in this 
figure is formed by this tangent plane, the planes ABC. 
ABD, and also by the plane passing through B xarallel 
to the face ADC. Analogously, the tetrahedron B 2C2D 
is formed by the same tangent plane, the planes ABD. 
ADC, and the plane passing through D parallel to ABC. 

From the similarity of the triangles ABC and ABCI 
(Fig. 58, b, ACI is a tangent line to the circle circum­

/'\ 
scribed about the triangle ABC, consequently, BACI = 
/ '\ /"-., /'\ 

BCA, besides, BCI II AC, hence, CIBA= BAC) find 
ac nc 

j ACI j = b. Analogously, find I ADt I = in' I AC2 1= 

mp JAB I-_~ B h t' I AC D d AB C b' 2 c' ut t e nang es I I an 2 2 

are similar, hence 

I CIDIl = j ADI I I C D I = pc2 

I AC2 I I AB2 j' I I bm • 

Note that if the lengths of the sides of the triangle 

are multiplied by bm , then these lengths will turn out 
c 
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to be numerically equal to the quantities am, bn, and 
cp, thus 

c2 
S s. AD1Cl = b2m2 

Let, further, A M denote the diameter of the 
circumscribed ball and BK the altitude of the pyramid 

c, 

A (a) 
__ 'n"'I:;::------, Ct 

c 
A ___ ... 

o 

(I) (e) 

Fig. 58 

ABCID} dropped from B on ACIDI (Fig. 58, c). From 
the similarity of the triangles ABK and 0 LA (0 L is 

c2 
perpendicular to AB) we find I BK 1= 2R' Hence, 
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And, finally t 

V ADICIB S ABCIS ABDI c2 c2 c4 

V = S S =-b2 • -2 ' V AD1C1B=b2m2 V. 
ABC ABD m 

Comparing two expressions for V AD1 C 1 B, we get the truth 
of the statement in question. 

Remark. I t follows from our reasoning that the angles 
of the trianfle the lengths of the sides of which are numer­
ically equa to the products of the lengths of the oppo­
site edges of the tetrahedron are equal to the angles be­
tween the tangents to the circles circumscribed about three 
faces of the tetrahedron. The tangents are drawn through 
the vertex common for these faces and are situated in the 
plane of the appropriate face. It is readily seen, that the 
same will also be true for a degenerate tetrahedron, that 
is, for a plane quadrilateral. Hence, in particular, it is 
possible to obtain the theorem of cosines (Bretschneider's 
theorem, see p. 171) for a plane quadrilateral. 

303. Let SI and S2 denote the areas of the faces having 
a common edge a, Sa, and S4 the areas of the two remaining 
faces. Let, further, a, m, and n denote the lengths of the 
edges forming the face SI, and a, y, and 6 the dihedral 
angles adjacent to them, V the volume of the tetrahedron. 
Then it is readily verified that the following equality 
is true: 

3V 3V 3V 
a -S cota+m-S coty+n scot6=2S1 , 

1 1 1 

or 
2S2 

a cot a-i- m cot y+ n,~ot 6 = 3V . 
Writing such equalities for all the faces -of the tetra­

hedron, adding together the equalities corresponding to 
the faces SI and S2, and subtracting the two others, we 
get 

1 
acot a - b cot ~ = 3V (Sf+S~-S~-S:). 

Squaring this equali ty, replacing cot2 a and cot2 ~ by 

. \ -1 and . \ ~ -1, and taking advantage of the SIn a sIn 
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following equalities: 

a2 4SiS~ b2 4S~Si 
sin2 a - 9V2 'sin2 ~ 9V2 

(see Problem 11), we fmally get 
1 

a2+b2 +2ab cot a cot ~= 9V2 (2Q-T), 

225 

with Q the sum of the squares of the pairwise products of 
the areas of the faces, and T the sum of the fourth powers 
of the areas of the faces. 

304. The necessity of all conditions is obvious. We 
are going to prove their sufficiency. 

(a) The statement of the problem is readily proved by 
making the development of the tetrahedron (to this end, 
the surface of the tetrahedron should be cut along three 
edges emanating from one vertex). 

(b) Make the development of the tetrahedron ABCD 
following Fig. 59, a in the supposition that the sums of 

Dz 

Fig. 59 

the plane angles at the vertices Band C are equal to 180°. 
The points DI , D2 , and Ds correspond to the vertex D. 
Two cases are possible: 

(1) 1 AD 1 = 1 BC I. In this case 1 DsA 1 + 1 D2A 1 = 
2 1 BC 1 = 1 DsD2 I, that is, the triangle D2ADa 
degenerates, the point A must coincide with the point K 
which is the midpoint of D 2Da• 

1/. 15-0449 
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(2) 1 AB 1 = 1 CD 1 (or 1 AC 1 = 1 BD I). In this 
case 1 KB 1 = 1 AB I, the point A being found on the 
middle perpendicular to the side D 2D s. If DID2DS is 
an acute-angled triangle, then 1 AB 1 < 1 KB 1 for points 
A situated inside the triangle KBC, and 1 AB 1 > 1 KB 1 
for the {loints situated outside the triangle KBC. 

And If the triangle DIDsDa is obtuse-angled (an obtuse 
angle being either at the vertex Dz or at the vertex D s), 
then at one of the two vertices of the tetrahedron (either 
B or C) one plane angle will be greater than the sum of 
two other angles. 

(c) Let 1 AB 1 = 1 CD I, 1 A C 1 = 1 DB I, and the 
sum of the angles at the vertex D is equal to 1800. We 
have: the triangle ACD is congruent to the triangle ABD, 

/, ~ 
consequently, ADB = DAC. 

/'-... ~ ./'-..... ~ /'.. 
Thus ADB + ADC + CDB = DAC + ADC + 

./"... /"'--... ./"'-.. 
CDB = 1800 • Hence, it follows that CDB = A CD 
and ~ACD = ~CDB, 1 AD 1 = 1 CB I. 

(d) Cut the tetrahedron along the edges, and super­
impose the four triangles thus obtained one over another 
so as to bring to coincidence their equal angles. In 
Fig. 59, b, identical letters corresJ>ond to one and the 
same vertex of the tetrahedron, and identical subscripts 
to one and the same face. Identical letters correspondlDg 
to one point show that at this point the corresponding 
vertices of the appropriate triangles coincide. Conse­
quently, 
I C3A 3 1 = 1 CA I, 1 B 2D2 1 = 1 B IDI 1 

and this means that AC3 is parallel to B~l which is 
impossible. 

(e) Project the tetrahedron ABCD on the plane par­
allel to the edges AB and CD. Then it is possible to 
prove that the projections of the triangles ABC and ABD 
will be equiva.lent. Exactly in the same manner, the 
projections of the triangles A CD and BCD will also be 
equivalent. And this means that the parallelogram with 
diagonals AB and CD will be the projection of ABCD. 
Hence follow the equalities 1 A C 1 = 1 BD I, 1 AD 1 = 
1 BC I. The equality 1 AB 1 = 1 CD 1 is proved exactly 
in the same way. 
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(f) Let 0 1 denote the point of tangency of the inscribed 
sphere with the face ABC, and O2 with the face BCD. 
The hypothesis implies that 0 1 and O2 are the centres 
of the circles circumscribed about ABC and BCD. Be­
sides, the triangle BC01 is congruent to the triangle BCO! 
This implies that 

/"-... 1 /"-... 1 /........ /"-.., 
BAC=:- B01C=- B02C=BDC. 

2 2 

Reasoning in the same way, we shall obtain that all 
the plane angles adjacent to the vertex D are equal to 
the corresponding angles of the triangle ABC, that is, 
their sum is equal to 1800 • The same may be asserted 
about the remaining vertices of the tetrahedron ABCD. 
Further, take advantage of Item (a). 

(g) Complete the given tetrahedron to get a parallele­
ptped in a usual way, that is, by passing through each 
edge of the tetrahedron a plane parallel to the opposite 
edge. Then the necessary and sufficient condition of the 
equality of the faces of the tetrahedron will be expressed 
by the condition that the obtained parallelepiped be 
rectangular. And from the fact that the edges of this 
parallelepiped are equal and parallel to the corresponding 
line segments joining the midpoints of opposite edges 
of the tetrahedron will follow our statement. 

(h) If 0 is the centre of the sphere circumscribed about 
the tetrahedron ABCD, then the hypothesis will imply 
that the triangle AOB is congruent to the triangle COD, 
since both triangles are isosceles with equal lateral sides, 
equal medians emanating from the vertex 0 (0 coincides 
with the midpoint of the line segment joining the mid­
points of AB and CD). Consequently, I AB I = I CD I. 
The equality of other pairs of opposite edges is proved 
exactly in the same manner. 

(i) From the fact that the distances from the centres 
of gravity to all the faces are equal follows the equality 
of the altitudes of the tetrahedron and then also the 
equality of its faces (see Item (e)). 

305. Let a, b, c, and d denote vectors perpendicular 
to the faces of the tetrahedron, directed outside and having 
the length numerically equal to the area of the corre­
sponding face, and let ea' eb' ee' and ed denote the unit 
15-
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vectors having the same directions as a, b, c, and d. 
Let, further, B denote the sum of the cosines of the dihedral 
angles, and k = ea + eb + ee + ed. 

It is obvious tliat k2 = 4 - 28. Thus, indeed, B ~ 2 
and $ = 2 if and only U k = ell + e" + ee + ed = O. 
But since a + b + c + d = 0 (see Problem 214), we 
obtain that for B = 2 the lengths of the vectors a, b, c, 
and d are equal to one another, i.e. all the faces are equiv­
alent, and from the equivalency of the faces there follows 
their congruence (see Problem 304 (e». To complete the 
proof, it remains to show that $ > 0 or that I k I < 2. 

For conveniency, we shall regard that I a I = 1, 
I b I ~ 1, I c I ~ 1, I d I ~ 1. Then ep = a, I k I = 
I a + b + c + d + (eb - b) + (ee - c) 1- (ed - d) I ~ 
1 eb - b 1 + 1 ec - c I + 1 ed - d I = 3 - (I b 1 + 
I c I + I d I) ~ 3 - I b + c + d I = 3 - I a I = 2. 
Equality may be the case only if all the vectors a, b, c, 
and d are collinear; since it is not so, I k I < 2, B> O. 

306. Consider the tetrahedron all faces of which are 
congruent triangles whose an~les are respectively equal 
to tne plane angles of our trIhedral angle. (Prove that 
such tetrahedron exists.) All the trihedral angles of this 
tetrahedron are equal to the given trihedral angle. The 
sum of the cosines of the dihedral angles of such tetra­
hedron is equal to 2 (see Problem 304). Consequently, 
the sum of the cosines of the dihedral angles of the given 
trihedral angle is equal to 1. 

307. Constructing a parallelepiped from the given 
tetrahedron, and passing through each edge a plane par­
allel to the opposite edge. we shall get for the equifaced 
tetrahedron, as is known, a rectangular parallelepiped. 

The centre of the inscribed ball coincides with the 
centre of the parallelepiped, and the centres of the exter­
nally inscribed balls are found at the vertices of the 
parallelepiped different from the vertices of the tetra­
hedron. This implies both statements of the problem. 

308. Let ABCD be the given tetrahedron, DR its 
altitude, DA I , DBI , and DCI the altitudes of the faces 
dropped from the vertex D on the sides BC, CA, and AB. 
Cut the surface of the tetrahedron along the edges DA, 
DB, and DC and make the development (Fig. 60). It is 
obvious that R is the point of intersection of the altitudes 
of the triangle DJD 2D s• Let F denote the point of inter­
section of the altitudes of the triangle ABC, A K the 
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altitude of this triangle, I AF I = hI' I F K I = h2. Then 
I DIH I = 2hl , I DIAl I = hI + h2' I HAIl = I hI -
hI I. Hence, since h is the altitune of our tetrahenron, 

h2 = 1 DH 12 = 1 DAI 12 - I HAl 12 

= (hI + h2)2 - (hI - h2)2 = 4h1h2• 

Now, let M denote the centre of gravity of the triangle 
ABC (it also serves as the centre of gravity of the tri­
angle DID2Da), 0 the centre of the circle circumscribed 

D3 

~~------~--------~~ 

Fig. 60 

about this triangle. I t is known that F, M, and 0 lie 
on one and the same straight line (E uler' s line), M lying 
between F and 0, 1 F M 1 = 2 1 MO I. 

On the other hand, the triangle DID'J,Da is homothetic 
to the triangle ABC with centre at M and ratio of simil­
itude equal to (-2), hence, 1 MN 1 = 2 I F M I. Hence 
it follows that I OH 1 = I FO I· 

309. When solving the preceding problem, we proved 
that the centre of the sphere circumscribed about the 
tetrahedron is projected on each edge into the midpoint 
of the line segment whose end points are the foot of the 
altitude dropped on this face and the point of intersection 
of the altitudes of this face. And since the distance from 
the centre of the sphere circumscribed about the tetra-
hedron to the face is equal to i-h, where h is the altitude 

of the tetrahedron, the centre of the circumscribed sphere 
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is found at a distance of Y Is h2 + a2 from the given 

points, where a is the distance between the point of inter­
section of the altitudes and the centre of the circle cir­
cumscribed about the face. 

310. First of all, let us note that all the triangles ABC 
are acute. Indeed, if H is the point of intersection of the 
altitudes of the triangle ABC, 0 the centre of the given 
circle, then 1 OH 1 = 3 10M I, M lying between 0 

Fig. 61 

and H, that is, H is found inside the circle circumscribed 
about the triangle ABC, and this means that the triangle 
ABC is acute, consequently, there is a pOint D such that 
ABCD is an equifaced tetrahedron. Let us develop this 
tetrahedron (Fig. 61). Obviously, Hl..' which is the point 
of intersection of the altitudes of the triangle D1D 2D 3 , 

is the foot of the altitude dropped from D on ABC. But 
the triangles ABC and D1D,Da..-have a common centre of 
gravity M with respect to which they are homothetic 
with the ratio of similitude (-2), hence 1 HIM 1 = 
21M H I, M lying between HI and H, HI is a fixed 
point. It remains to prove that the altitude of the tetra­
hedron ABCD is also constant. In the triangle ABC 
draw the altitude AK and extend it to intersect the cir­
cumscribed circle at point L. I t is known (and is readily 
proved) that 1 LK 1 = 1 KH I· Let 1 AH 1 = hl1 
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1 H K 1 = h2' the altitude of the tetrahedron is h. We 
know (see Problem 307) that h2 = 4hlh2 = 2 1 AH 1 X 
1 HL 1 = 2 (R2 - 9a2), where a = 1 OM I, which was 
required to be proved. 

311. Consider too cube AEFGAlElFlGl with edge equal 
to the side of the square ABCD. On the edges AIEl and 
A lGl take the points P and 0 such that 1 AlP 1 = 1 BP 1 = 
1 CO I, 1 Al 0 1 = 1 OD 1 = 1 PC 1 (Fig. 62, a). Con-

e 
..;r-----__ Cf 

'D 

E-------~ 
(a) 

£ 

A 

Fig. 62 

sider the rectangle AlPMlO. In view of the condition 
1 AlP 1 + 1 AlO 1 = 1 AIEl I, the point Ml lies on the 
diagonal ElGl . Consequently, if M is the projection of Ml 
on EG, then the tetrahedron APOM has all the faces 
equal to the triangle A PO. The square A BCD whose 
plane contains the triangle A PO is obtained from the 
square AEElAl by rotating about the diagonal AFI 
through some angle a (Fig. 62, b). Since the plane EGA I 
is perpendicular to the diagonal A F 1, BD belongs to 
this plane. But the planes AEElA u ABCD, as well as the 
straight lines EG, EAu AlG, and BD are tangent to the 
ball inscribed in the cutie. Hence it follows that the 
angle between the planes ABCD and A lEG has a constant 
size, it is equal to the angle q> between the planes AEElAl 
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and A,EC for which cos cp = ~3. But the planes A,EC 

and ABCD intersect along the diagonal BD. Hence, the 
point M lies in the plane passing through BD and making 
an angle q> with the plane A BCD , and the locus of pro­
jections of points M will be represented by two line seg­
ments emanating from the midpoint of A C at an angle q> 

1 }'-
to AC so that cos q> = va' and having the length a 2 2 

(Fig. 62, c). 
312. (a) Let ABeD denote the given tetrahedron. If its 

altitudes intersect at the point U, then DU is perpen­
dicular to the plane ABC and, hence, DH is perpendic­
ular to BC. Exactly in the same way, AU is perpendic­
ular to BC. Consequently, the plane DAB is perpen­
dicular to BC, that is, the edges DA and BC are mutually 
perpendicular. 

Conversely, let the opposite edges of the tetrahedron 
ABCD be pairwise perpendicular. Through DA pass 
a plane perpendicular to BC. Let us show that the alti ... 
tudes of the tetrahedron drawn from the vertices A and D 
lie in this plane. 

Denote by K the point of intersection of the passed 
plane and the edge BC. The altitude DDl of the triangle 
ADK will be perpendicular to the lines AK and BC, 
hence, it is an altitude of the tetrahedron. Thus, any two 
altitudes of the tetrahedron intersect, hence, all the four 
intersect at one point. 

(b) It is easy to prove that if one altitude of the tetra­
hedron passes through the point of intersection of the 
altitudes of the appropriate face, then the opposite edges 
of the tetrahedron are pairwise perpendicular. This 
follows from the theorem on three perpendiculars. Hence, 
Items (a) and (b) are equivalent. 

(c) The equality of the sums of the squares of opposit& 
ed~s of the tetrahedron is equivalent to the conaition 
of the perpendicularity of opposite edges (see Item (a»). 

(d) Complete the tetrahedron to a parallelepiped, as 
usual, by passing through each of its edges a plane parallel 
to the opposite edge. The edges of the obtained parallele­
piped are equal to the distance between the midpoints 
of the skew edges of the tetrahedron. On the other hand. 
the condition of perpendicularity of opposite edges of 
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the tetrahedron which is, according to Item (a), equiva­
lent to the condition of the orthocentricity of the given 
tetrahedron, is, in turn, equivalent to the condition 
of the equality of the edges of the obtained parallelepiped 
(the diagonals of each face are equal and parallel to two 
opposite edges of the tetrahedron, that is, each face 
must be a rhombus). 

(e) From Problems 300 and 303 it follows that this 
condition is equivalent to the condition of Item (c). 

(f) Let a and aI' band bu C and CI be the lengtbs of 
three pairs of opposite edges of the tetrahedron, a the 
angle between them. From Problem 185 it follows that 
of the three numbers aal cos a, bbl cos a, and CCI cos a 
one is equal to the sum of two others. If cos a 9= 0, then 
of the three numbers aal' bbu and CCI one number is 
equal to the sum. of two others. But this is impossible, 
since there is a triangle the lengths of the sides of which 
are numerically equal to the quantities aau bbl , and CCI 
(see Problem 302). 

313. Let ABeD denote the/iven tetrahedron. Com­
plete it to get a parallelepipe in a usual way. Since 

, ___ __.C 

A 

Fig. 63 

ABeD is an orthocentric tetrahedron, all the edges of the 
parallelepiped will be equal in length. Let A BI be the 
diagonal of a face of the parallelep~ed parallel to AB, 0 
the centre of the ... \ball. circumscribed about ABeD, H 
the point of intersection of the altitudes, M the centre 
of gravity (Fig. 63). Then the triangles ABH and AJ.BIO 
are symmetric with respect to the point M. This follows 
from the fact that ABBIAI is a parallelogram and, be-
£6-0449 
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sides, AIO is perpendicular to the plane ACD (the points 
o and Al are equidistant from the points A, C, and D), 
and, hence, })arallel to BU. Exactly in the same manner, 
OBI is parallel to AU. 

314. Let us introduce the notation used in the pre­
ceding problem. Let K and L be the midpoints of AB 
and AIBI • Then KOLU is a parallelogram. Consequently, 

IOU [2=2[ OK [2+2[ OL [2-1 KL [2 

= 2 ( R2 _ [ ~ 12 ) + 2 ( R2 _ I C~ [2 ) -12 

= 4R'-~ ( 1 AB 12+ 1 CD 12) - (Io=4R2 - 3I2 • 
2 

315. If ABCD is an orthocentric tetrahedron, then 
(see Problem 312 (d» 

I AB 12 + I CD 12 = I AD 12 + I BC I't 
whence 

I AB 12 + I AC 12 - I BC 12 = I AD 12 + I AC 12 

-I CD I', 

./"'-... /"... 
that is, the angles BAC and DAC are both acute or ob-
tuse. 

316. The section of an orthocentric tetrahedron by 
any Clane parallel to opposite ed~s and passing at an 
e~ua distance from these edges IS a rectangle whose 
dIagonals are equal to the distance between the midpoints 
of opposite edRE's of the tetrahedron (all these distances 
are equal in length, see Problem 312 (d)). 

Hence it follows that the midpoints of all the edges 
of' an orthocentric tetrahedron lie on the surface of the 
sphere whose centre coincides with the centre of gravity 
of the given tetrahedron and the diameter is equal to 
the distance between the opposite edges of the tetrahed­
ron. Hence, all the four 9-point circles lie on the surface 
or this sphere. 

317. Let 0, M, and U respectively denote the centre 
of the circumscribed ball, centre of gravity and ortho­
centro (the point of intersection of altitudes) of the ortho-
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centric tetrahedron, M the midpoint of the line segment 
OH (see Problem 3f3). The centres of gravity of the faces 
of the tetrahedron serve as the vertices of the tetrahedron, 
homothetic to the given one, with the centre of similitude 
at th~ point M an.d the ratio of ~imilitude ~qual to -(f/3). 
In thIS homothetic transformatIOn the pOInt 0 will move 
into the point 0 1 situated on the line segment MH so 
that I MOl I = 1.13 I OM I, 0 1 will be the centre of the 
sphere passing through the centres of gravity of the faces. 

On the other hand, the points dividing the line seg­
ments of the altitudes of the tetrahedron from the vertices 
to the orthocentre in the ratio 2 = f serve as the vertices 

0' 0; H' 

Fig. 64 

of the tetrahedron homothetic to the given with the 
centre of similitude at H and the ratio of similitude 
equal to f/3. In this homothetic transformation the point 
0, as is readily seen, will go to the same point 01" Thus, 
eight of twelve points lie on the surface of the sphere 
with centre at 0 1 and radius equal to one-third the radius 
of the sphere circumscribed about the tetrahedron. 

Prove that the points of intersection of altitudes of 
each face lie on the surface of the same sphere. Let 0', 
HI, and MI denote, respectively, the centre of the cir­
cumscribed circle, the point of intersection of altitudes, 
and the centre of gravity of some face. 0' and H' are the 
respective projections of 0 and H on the plane of this 
face, and the point M' divides the line segment 0' H' 
in the ratio f : 2 as measured from the point 0' (a well­
known fact from plane geometry). Now, we easily make 
sure (see Fig. 64) that the projection of 0 1 on the plane of 
this face (point OD coincides with the midpoint of the 
line segment M' HI, that is, 0 1 is equidistant from M' 
and H' which was required to tie proved. 

f 6-
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318. The centres of gravity of the faces of the ortho~ 
centric tetrahedron lie on the surface of the sphere homo~ 
thetic to the sphere circumscribed about the tetrahedron 
with the centre of similitude at the point M and the ratio 
of similitude equal to 1/3 (see the solution of Problem 
317). Hence follows the statement of the problem. 

319. The feet of the altitudes of the orthocentric 
tetrahedron lie on the surface of the sphere homothetic 
to the sphere circumscribed about the tetrahedron with 
the centre of similitude at the point G and ratio of simil­
itude equal to -(1/3) (see the solution of Problem 317). 
Hence follows the statement of the problem. 

320. Suppose the contrary. Let the planes containing 
the arcs intersect pairwise on the surface of the ball at 
points A and A H Band Bh C and C1 (Fig. 65). Since each 

c 

B 

Fig. 65 

arc measures more than 180°, it must contain at least 
one of any two opposite points of the circle on which 
it is situated. Let us enumerate these arcs and, respe~ 
tively, the planes they lie in: I, II, III. A and A:.., are the 
points of intersection of planes I and II, Band BI the 
points of intersection of planes II and III, C and C.\ 
the points of intersection of planes III and I. Each of 
the points A, A.\, B, B1, C, C1 must belong to one arc. 
Let At and C1 belong to arc I, Bl to arc II. Then Band C 
must belong to arc III, A to arc II. Denote by a, ~, y 
the plane angles of the trihedral angles, as is shown in 
the figure, 0 the centre' of the sphere. Since arc I does not 
contain the points A and C, the inequality 3600 - ~ > 
3000 must De fulfilled. 

Similarly, since arc I I does not contain the points B 
and AH it must be 1800 + a> 3000 and, finally, for 
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arc III we wUl have 3600 - Y > 300°. Thus, ~ < 600 , 

ex > 1200 , Y < 600 , hence, ex > ~ + y, which is impos­
sible. 

321. Let A and B denote two points on the surface of 
the sphere, C a point on the smaller arc of the great circle 
palsing through A and B. 

Prove that the shortest path from A to B must pass 
through C. Consider two circles ex and ~ on the surface 
of the sphere passing through C with centres on the radii 
OA and OB (0 the centre of the sphere). Let the line join­
ing A to B does not pass through C and intersect the circle 
ex at point M and the circle p at N. 

Rotating the circle ex together with the part of the 
Hne enclosed inside it so that M coincides with C and the 
circle ~ so as to bring N in coincidence with C, we get 
a line joining A and B whose length, obviously, is less 
than the length of the line under consideration. 

322. The circumscribed sphere may not exist. It 
can be exemplified by the polyhedron constructed in the 
following way. Take a cube and on its faces as on bases 
construct outwards regular quadrangular pyramids with 
dihedral angles at the base equal to 450 • As a result, we 
get a dodecahedron (the edges of the cube do not serve as 
the edges of this polyhedron), having fourteen vertices, 
eight of which are the vertices of the cube, and six are 
the vertices of the constructed pyramids not coinciding 
with the vertices of the cube. 

I t is easy to see that all the edges of this polyhedron 
are equal in length and equidistant from the centre of 
the cube, while the vertices cannot belong to one sphere. 

323. Let us note, first of all, that the area of the spher­
ical lune formed by the intersection of the surface of the 
sphere with the faces of the dihedral angle of size ex, whose 
edge passes through the centre of the sphere, is equal 
to 2exR2. This follows from the fact that this area is 
proportional to the magnitude of ex, and for ex = n it is 
equal to 2nR2. 

To each pair of planes forming the two faces of the 
given trihedral there correspond two lunes on the surface 
of the sphere. Adding their areas, we get the surface 
of the sphere enlarged by 4Sh" where S/). is the area 
of the desired triangle. Thus, 

S /). = R2 (ex + ~ + y - n). 
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The quantity c£ + ~ + y - n is called the spheric excess 
of the spheric triangle. 

324. Consider the sphere with centre inside the poly­
hedron and project the edges of. the polyhedron from the 
centre of the sphere on its sphere. 

The surface of the sphere will be broken into poly­
gons. If nk is the number of sides of the kth polygon, 
Ak the sum of its angles, Sk the area, then 

Sk = R' (Alt - n (nit - 2)). 

Adding together these equalities for all K, we get 

4nRS = R2 (2nN - 2nk + 2nM). 

Hence, 

N - K + M = 2. 

325. Let c£ denote the central angle corresponding to 
the spheric radius of the circle <the angle between the 
radii of the sphere drawn from the centre of the sphere 
to the centre of the circle and a point on the circle). 

Consider the spheric triangle corresponding to the 
trihedral angle with vertex at the centre of the sphere one 
edge of which (OL) passes through the centre of the circle, 
another (OA), through the point on the circle, and a third 
(OB) is arranged so that the plane OAB touches the circle, 
the dihedral angle at the edge OL being equal to <p, 
/'... 
LOA = c£. 

Applying the second theorem of cosines (see Prob­
lem 166), find the dihedral angle at the edge OB, it is 
equal to arccos (cos c£ sin <Pl. Any circumscribed polygon 
(our polygon can be regarded as circumscribed, since 
otherwise its area could be reduced) can be divided into 
triangles of the described type. Adding their areas, we 
shall see that the area of the polygon reaches the smallest 
value together with the sum arccos (cos c£ sin <PI) + 
arccos (cos c£ sin <P2) + ... + arccos (cos c£ sin <PN)' 
where <PI' ••• , <PlY are the corresponding dihedral angles, 
<PI + <P2 + ... --t- <PN = 2n. Then we can take advan­
tage of the fact that the function arccos (k sin <p) is a 
concave (or convex downward) function for 0 < k < 1. 
Hence it follows that the minimum of our sum is reached 
for <PI = <P2 = ... = <PN' 
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326. Denote, as in Problem 324, by N the number of 
faces, by K the number of edges, and by M the number 
of vertices of our polyhedron, 

N - K + M = 2. (d 
Since from each vertex there emanate at least three edges 
and each edge is counted twice, M < ~ K. Substituting 
~ 3 

M into (f), we get 
f 

N - 3K~2, 

whence 2K::::; 6N - 12, 2; < 6. The latter means that 

tbere is a facp having less than 6 sides. Indeed, let us 
number thp faces and denote by nl, n2, .•• , nN the 
number of sides in each face. Then 

n t + n2 + ... + nN _ 2K < 6 
N - N . 

327. If each face has more than three sides and from 
each vertex there emanate more than three edges, then 
(the same notation as in Problem 324) 

K > 2M, K > 2N 

and N - K + M < 0, which is impossible. 
328. If all the faces are triangles, then the number 

of edges is multiple of 3. If there is at least one face 
with the number of sides exceeding three, then the num­
ber of edges is not less than eight. An n-gon pyramid has 
2n edges (n > 3); (2n + 3) ed~s (n > 3) will be found 
in the polyhedron which will be obtained if an n-gon 
pyramid is cut by a triangular plane passing sufficiently 
close to one of the vertices of the base. 

329. If the given polyhedron has n faces, then each 
face can have from three to (n - f) sides. Hence it follows 
that there are two faces with the same number of sides. 

330. Consider the so-called d-neighbourhood of our 
polyhedron, that is, the set of points each of which is 
found at a distance not greater than d from at least one 
point of the polyhedron. The surface of the obtained solid 
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consists of plane parts equal to the corresponding faces 
of the polyhedron, cylindrical parts corresponding to the 
edges of the polyhedron (here, if I, is the length of some 
edge and a, is the dihedral angle at this edge, then the 
surface area of the part of the corresponding cylinder is 
equal to (n ~ a,) IJd), and spherical parts corresponding 
to the vertices 01 the polyhedron the total area of which 
is equal to the surface aNa of the sj)here of radius d. 
On the other hand, the surface area of the d-neighbourhood 
of the J>olyhedron is less than the surface area of the sphere 
of radius d + 1, that is, 

S+d ~ (n-ailli+4nd2 < 4n (d+1)2. 

And since ai E;;; ~ t we get 

2J li < 24, 

which was required to be proved. 
331. In Fig. 66, 0 denotes the centre of the sphere, 

A and B are the points of intersection of the edge of the 

o 
Fig. 66 

dihedral angle with the surface of the sphere, D and C 
'-'" -are the midpoints of the arcs ADB and A CB, respectively, 

the plane ADB passes through 0, and E is the vertex 
of the spherical segment cut off by the plane A CB. The 
area of the curvilinear triangle ADC amounts to half the 

desired area. On the other hand (assUming a ~~ ) , 

SADC = SAEC ~ SAED· (f) 



Answers, Hints, Solutions 24i 

Find S AEC. If <p is tbe angle between the planes AEO 

and OEC, I EK I =h, then obviously, S.AEC=2~ 2nRh= 

<pRh; h and <p are readily found: 

h= I EK 1= R-I OK 1= R-a sin ex, 

sin <p= sin {xi = I AL I = V R2-a2 , 
I AK ! V R2-a2 sin2 ex 

. VR2-a2 
<p= arCSIn ~i 2 0 2 0 

r R -a2 sm ex 
ThU!~, 

VR~-a2 
S AEC = R (R-a sin ex) arcsin V 2 2' 2 0 (2) 

R -a 8m ex 

Now find SAEDO As iI known (see Problem 323), 

SA~D =-= R2 (<p + '¢ + y ~ n), 

wh8re ., ,¢, al'ld y are the dihedral an2'les of the trihedral 
angle with vertex a.t 0 and edges OE, OA, and OD. Thy 
aJlgle <p is already found. 

To determine t:h.e angle '¢ (the angle at the edge 0 A), 
ta.ke advantage of the first theorem of uosines (Problem 
i66) applied to the trihedral angle with vertex A for 
which 

/"'-, n /'. a sin ex /'-..., a 
KAL=_-ffi, sin KAO-=-:.. , sin LAO=-

2 Y R R' 

R oR 
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It is obvious that y = n/2. Consequently, 

[ -yR2-a2 
S AED = R2 arcsin --;::-::::::;:=:::;::== V R2-a2 sin! a 

'- V R2- a2 sin an] + arccos ,r 2 . 
J" R2-a2 sin2 a 

(3) 

Substituting (2) and (3) into (f) and simplifying, we get 
the answer. 

Answer: 

2R2 Rcosa 
arccos -:r~;:::==i=::;:::i=' V R!-a2 sin2 a 

• a cos a 
- 2Ra sm a arccos -y . 

R2-a2sin2a 

332. Consider the regular octahedron with edge 2R. 
The ball touchin_g all of its edges has the radius R. The 
surface of the ball is separated by the surface of the octa­
hedron into eight spherical segments and six curvilinear 
quadrilaterals equal to the smaller of the two desired. 

2nR2 (4 /2 ) Answer: -3- I 3 - 3 , 

nR2 (f36 V ~ - 2 ) • 

na2 (2-,r'3) 
333. Twelve lunes with total area J" and 

4 
six curvilinear quadrilalerals whose total area is 
na2 (y3-f) 

2 -
3M. Suppose that a ball can be inscribed in the given 

polyhedron. loin the point of tan~ncy of the ball with 
some face to all the vertices of thIs face. Each face will 
be separated into triangles. Triangles situated in neigh­
bouring faces and having a common odge are congruent. 
Consequently, to each "black" triangle there corresponds 
a congruent "white" triangle. The sum of the angles of the 
triangle at each point of tangency is equal to 2n. The 



Answers, Hints, Solutions 

sum of these angles over all faces is equal to 2nn, where 
n is the number of faces. Of this sum more than half 
is the share of "black" triangles (by the hypothesis), 
and the sum of the corresponding angles for "white" 
triangles, as it was proved, is not less. There is a contra­
diction. 

335. Prove that there can be not more than six balls. 
Suppose that there are seven balls. Join the centres of 
all the seven balls to the centre of the given ball and 
denote by Ou 0., ... , 0 7 the points of intersection of 
these line segments with the surface of the given balL 
For each point 0i consider on the sphere the set of points 
for which the distance (over the surface of the sphere) to 
the point 0i is not greater than the distance to any other 
point O,p k ~ i. The sphere will be separated into seven 
spherical polygons. Each polygon is the intersection 
of six hemispheres containing the point Of whose boundary 
is the great circle along which the plane passing through 
the midpoint 0iOk and perpendicular to it cuts the sphere. 

Each of the formed polygons contains a circle whose 
spherical radius is seen from the centre of the original 
sphere at an angle a, sin a = 0.7. 

Denote by K and N, respectively, the number of sides 
and vertices of the separation thus obtained. (Each side 
is a common side of two adjacent polygons and is counted 
only once. The same is valid for the vertices.) It is easily 
seen that for such separation Euler's formula holds true 
(see Problem 324). In our case this will yield K = N + 5. 

On the other hand, K ;;> ; N, since from each vertex 

there emanate at least three sides, and each side is 
counted twice. 

Now, it is easy to obtain that K < 15, N < 10. In 
Problem 325, we have proved that among all spherical 
n-gons containing the given circle a regular n-gon has 
the smallest area. Besides, it is possible to show that 
the sum of areas of regular n- and (n + 2)-gons is greater 
than the doubled area of a regular n-gon. (The polygons 
circumscribed about one circle are conSidered.) It is also 
obvious that the area of a re~lar circumscribed n-gon 
is decreased with an increase In n. Hence it follows that 
the sum of areas of the seven obtained polygons cannot 
be less than the sum of areas of five regular quadrilaterals 
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and two regular pentagons circumscribed about the circle 
with the SJ~herical radius to which there corresponds the 
central angle a= arcsin 0.7. The area of the correspond­
ing regular pentagon will be 

S5 = 9 [10 arccos (cos a sin ~) - 3n ] ' 

the area of the regular quadrilateral 

84 =9 [8 arccos (~2 cos a ) - 2nJ. 

We can readily prove that 286+ 584.,.> 36n. Thus, seven 
balls with radius 7 cannot simultaneously touch the 
ball with radius 3 without intersecting one another. 
At the same time we can easily show that it is possible 
in the case of six balls. 

336. Consider the cube ABCDAIBIC)D~. On the edges 
AlB and AID take points K and L such that I AIK I = 
I CM I, I AlL I = I CN I. Let P and Q denote the 
points of intersection of the lines AK and BA I , AL and 
DAIf respectively. 

As is eaiily seen, the sides of the triangle AIPQ are 
equal to the corresponding line segments of the diagonal 
BD. And since the triangle BAlD is regular, our statement 
has been proved. 

337. If the point P did not lie in the plane of the 
triangle ABC, the statement of the problem would be 
obvious, since in that case the points P, A 2, B" and C2 
would belong to the section of the surface of the sphere 
circumscribed about the tetrahedron ABCP by the plane 
passing through P and l. The statement of our problem 
can now be obtained with the aid of the passage to the 
limit. 

338. Let ABCDEF denote the plane hexagon circum­
scribed about the circle. Take an arbitrary space hexagon 
AIBIC}DIEIFI (Fig. 67), different from ABCDEF, whose 
projection on our plane is the hexagon ABCDEF and 
whose corresponding sides pass through the points of 
contact of the hexagon ABCDEF and the circle. To prove 
the existence of such hexagon AIBICID}EIFh it suffices 
to take one vertex, say A If arbitrarily on the perpendic­
ular to the plane erected at the point A, then the remain-
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ing vertices will be determined identically. Indeed, let; 
a, b, e, d, e, and f be the lengths of the tangents to the 
circle drawn through the respective points A, B, C, D, 
E, F, and h the distance from A to the plane. Then BI 
lies on the other side of the plane as compared with A 

At 

Fig. 67 

at a distance of hb, CIon the same side as Al at a distance 
a 

of hb. ~ = he from the plane, and so on. Finally, we 
a b a 

find that FI lies on the other side of the plane as compared 
with Al at a distance of hi and, hence, Al and FI lie on 

a 
the straight line passing through the point of tangency 
of AF with the circle. 

Any two opj>osite sides of the hexagon AIBICIDIEIFI 
lie in one and the same plane. This follows from the 
fact that all the angles formed by the sides of the hexa­
gon with the given plane are congruent. Consequently, 
any two diagonals connecting the opposite vertices of 
the hexagon AIBICIDIEIFI intersect, and, hence, all 
the three diagonals of this hexagon (they do not lie in 
one plane) intersect at one point. Since the hexagon 
ABCDEF is the projection of the hexagon AIBICIDIEIF1' 
the theorem has been proved. 

339. The plane configuration indicated in the problem 
can be regarded as three-dimensional projection~ a tri-
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hedral angle cut by two planes, for which our statement 
is obvious. 

340. This problem represents one of the possible 
three-dimensional analogues of Desargues' theorem (see 
Problem 339). For its solution, it is convenient to go out 
to a four-dimensional space. 

Let us first consider some properties of this space. 
The simplest fig!J-res of the four-dimensional space are: 

a point, a straight line, a plane, and a three-dimensional 
variety which will be called the hyperplane. The first 
three figures are our old friends from the three-dimen­
sional space. Of course, some statements concerning 
these fi~s must be refined. For instance, the following 
axiom of the three-dimensional space: if two distinct 
planes have a common point, then they intersect along 
a straight line, must be replaced by the axiom: if two 
distinct planes belonging to one hyperplane have a com­
mon point, then they intersect along a straight line. The 
introduction of a new geometric image, a hyperplane, 
prompts the necessity to introduce a group of relevant 
axioms, just as the passage from plane geometry to solid 
~ometry requires a group of new axioms (refresh them, 
please) expressin~ the basic pr9perties of planes in space. 
This group consIsts of the following three axioms: 

f. Whatever a hyperplane is, there are po in ts belong­
ing to it and j>oints not belonging to it. 

2. If two distinct hyperplanes have a common point, 
then they intersect over a plane, that is, there is a plane 
belonging to each of the hyperplanes. 

3. If a straight line not belonging to a plane has a 
common point with this plane, then there is a unique 
hyperplane containing thIs line and this plane. 

From these axioms it follows directly that four points 
not belonging to one plane determine a hyperplane; exact­
ly in the same way, three straight lines not belonging to 
one plane, but having a common point, or two distinct 
planes having a common straight line determine a hyper­
plane. We are not going to prove these statements, try 
to do it independently. 

For our further reasoning we need the following fact 
existing in the four-dimensional space: three distinct 
hyperplanes having a common point also have a common 
straight line. Indeed, by Axiom 2, any two of three hyper­
planes have a common plane. Let us take two planes 
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over which one of the three hyperplanes intersects with 
two others. These two planes belonging to one hyper­
plane have a common point and, hence, intersect along 
a straight line or coincide. 

Let us now pass to the proof of our statement. If the 
three planes under consideration were arranged in a four­
dimensional space, then the statement would be obvious. 
Indeed, every trihedral angle determines a hyperplane. 
Two hyperplilnes intersect over a plane. This plane does 
not belong to a third hyperplane (by the hypothesis, 
these hyperplanes intersect one of the given planes along 
three straight lines not passing through one point) and, 
consequently, intersects with them along a straight line. 
Any three corresponding faces of trihedral angles lie 
in one hyperplane determined by two planes on whicb 
the corresponding edges lie, and therefore each triple 
of the corresponding faces has a common point. These 
three points belong to the three hyperplanes determined 
by the trihedral angles, and, as it was proved, lie on one 
straight line. Now, to complete the proof, it is sufficient 
to "see" in the given hypothesis the projection of the cor­
responding four-dimensional configuration of planes and 
trihedral angles. 
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