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Preface

This book contains 340 problems in solid geo-
metry and is a natural continuation of Problems
in Plane Geometry, Nauka, Moscow, 1982. It is
therefore possible to confine myself here to those
points where this book differs from the first.

The problems in this collection are grouped
into (1) computational problems and (2) prob-
lems on proof.

The simplest problems in Section 1 only have
answers, others, have brief hints, and the most
difficult, have detailed hints and worked solu-
tions. There are two reservations. Firstly, in
most cases only the general outline of the solution
is given, a number of details being suggested for
the reader to consider. Secondly, although the
suggested solutions are valid, they are not pat-
terns (models) to be used in examinations.

Sections 2-4 contain various geometric facts
and theorems, problems on maximum and min-
imum (some of the problems in this part could
have been put in Section 1), and problems on
loci. Some questions pertaining to the geometry
of tetrahedron, spherical geometry, and so forth
are also considered here.

As to the techniques for solving all these prob-
lems, I have to state that I prefer analytical com-
putational methods to those associated with
plane geometry. Some of the difficult problems
in solid geometry will require a high level of
concentration from the reader, and am ability
to carry out some rather complicated work.

The Author



Section 1

Computational Problems

1. Given a cube with edge a. Two vertices of
a regular tetrahedron lie on its diagonal and the
two remaining vertices on the diagonal of its
face. Find the volume of the tetrahedron.

2. The base of a quadrangular pyramid is a
rectangle, the altitude of the pyramid is ~. Find
the volume of the pyramid if it is known that
all five of its faces are equivalent.

3. Among pyramids having all equal edges
(each of length a), find the volume of the one
which has the greatest number of edges.

4. Circumscribed about a ball is a frustum of
a regular quadrangular pyramid whose slant
height is equal to a. Find its lateral surface area.

5. Determine the vertex angle of an axial sec-
tion of a cone if its volume is three times the
volume of the ball inscribed in it.

6. Three balls touch the plane of a given tri-
angle at the vertices of the triangle and one an-
other. Find the radii of these balls if the sides of
the triangle are equal to a, b, and c.

7. Find the distance between the skew dia-
gonals of two neighbouring faces of a cube with
edge a. In what ratio is each of these diagonals
divided by their common perpendicular?

8. Prove that the area of the projection of a
polygon situated in the plane @ on the plane f
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is equal to S cos ¢, where S denotes the plane
of the polygon and ¢ the angle betweenj the

planes a and P.
9. Given three straight lines passing through

one point A. Let B; and B, be two points on
one line, C, and C, two points on the other, and
D, and D, two points on the third line. Prove

that

VaB,C,D, _ | 4B |1 AC, | -] AD, |
V aB,C,D, | AB, |-| ACy || AD, | *

10. Let a, P, and y denote the angles formed
by an arbitrary straight line with three pairwise
perpendicular lines. Prove that cos® @ - cos?p
cos?y = 1.

11. Let S and P denote the areas of two faces
of atetrahedron, a the length of their common edge,
and a the dihedral angle between them. Prove
that the volume V of the tetrahedron can be found
by the formula

V= 28 P sin o

=,
Sa

12. Prove that for the volume V of an arbi-
trary tetrahedron the following formula is valid:

vV m%—abd sin ¢, where a and b are two opposite

edges of the tetrahedron, d the distance between
them, and ¢ the angle between them.

13. Prove that the plane bisecting the dihedral
angle at a certain edge of a tetrahedron divides
the opposite edge into parts proportional to the
areas of the faces enclosing this angle.

14. Prove that for the volume V of the poly-
hedron circumscribed about a sphere of radius R
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the following equality holds: V = %SnR, where

S, is the total surface area of the polyhedron.
15. Given a convex polyhedron all of whose

vertices lie in two parallel planes. Prove that

its volume can be computed by the formula

V=2 (S,+8,+485),

where S, is the area of the face situated in one
plane. S, the area of the face situated in the
other plane, S the area of the section of the poly-
hedron by the plane equidistant from the two
given planes, and % is the distance between the
given planes.

16. Prove that the ratio of the volumes of a
sphere and a frustum of a cone circumscribed
about it is equal to the ratio of their total sur-
face areas.

17. Prove that the area of the portion of the
surface of a sphere enclosed between two par-
allel planes cutting the sphere can be found by
the formula

S = 2nRh,

where R is the radius of the sphere and % the dis-
tance between the planes.

18. Prove that the volume of the solid generated
by revolving a circular segment about a nonin-
tersleoting diameter can be computed by the for-
mula

V= nah,
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where a is the length of the chord of this segment
and 2 the projection of this chord on the dia-
meter.

19. Prove that the line segments connecting
the vertices of a tetrahedron with the median points
of opposite faces intersect at one point (called
the centre of gravity of the tetrahedron) and are
divided by this point in the ratio 3 : 1 (reckon-
ing from the vertices).

Prove also that the line segments joining the
midpoints of opposite edges intersect at the same
point and are bisected by this point.

20. Prove that the straight lines joining the
midpoint of the altitude of a regular tetrahedron
to the vertices of the face onto which this alti-
tude is dropped are pairwise perpendicular.

21. Prove that the sum of the squared lengths
of the edges of a tetrahedron is four times the sum
of the squared distances between the midpoints
of its skew edges.

22. Given a cube ABCDA,B,C,D,* with an
edge a, in which K is the midpoint of the edge
DD,. Find the angle and the distance between
the straight lines CK and A4,D.

23. Find the angle and the distance between
two skew medians of two lateral faces of a regu-
lar tetrahedron with edge a.

24, The base of the pyramid SABCD is a quad-
rilateral ABCD. The edge SD is the altitude of
the pyramid. Find the volume of the pyramid

if itisknownthat |AB |= [BC |= V5, |AD | =

* ABCD and A,B,C,D, are two faces of the cube,
AA,, BB,, CCy, DD, are its edges.
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IDC| =V 2, |AC| =2, |SA |+ |8B| =
2+ V5.

25. The base of a pyramid is a regular tri-
angle with side a, the lateral edges are of length b.
Find the radius of the ball which touches all
the edges of the pyramid or their extensions.

26. A sphere passes through the vertices of
one of the faces of a cube and touches the sides
of the opposite faces of the cube. Find the ratio
of the volumes of the ball and the cube.

27. The edge of the cube ABCDA,B,C.D, is
equal to a. Find the radius of the sphere passing
through the midpoints of the edges AA,, BB,
and through the vertices A and C,.

28. The base of a rectangular parallelepiped is
a square with side a, the altitude of the parallel-
epiped is equal to b. Find the radius of the sphere
passing through the end points of the side AB
of the base and touching the faces of the parallel-
epiped parallel to AB.

29. A regular triangular prism with a side of
the base a is inscribed in a sphere of radius R.
Find the area of the section of the prism by the
plane passing through the centre of the sphere
and the side of the base of the prism.

30. Two balls of one radius and two balls of
another radius are arranged so that each ball
touches three other balls and a given plane. Find
the ratio of the radii of the greater and smaller
balls.

31. Given a regular tetrahedron ABCD with
edge a. Find the radius of the sphere passing
through the vertices C and D and the midpoints
of the edges AB and AC.
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32. One face of a cube lies in the plane of the
base of a regular triangular pyramid. Two vertices
of the cube lie on one of the lateral faces of the
pyramid and another two on the other two faces
(one vertex per face). Find the edge of the cube
if the side of the base of the pyramid is equal to a
and the altitude of the pyramid is A.

33. The dihedral angle at the base of a regular
rn-gonal pyramid is equal to a. Find the dihedral
angle between two neighbouring lateral faces.

34. Two planes are passed in a triangular prism
ABCA,B,C,*: one passes through the vertices 4,
B, and C,, the other through the vertices A4,,
B;, and C. These planes separate the prism into
four parts. The volume of the smallest part is
equal to V. Find the volume of the prism.

35. Through the point situated at a distance a
from the centre-of a ball of radius R (R > a),
three pairwise perpendicular chords are drawn.
Find the sum of the squared lengths of the seg-
ments of the chords into which they are divided
by the given point.

36. The base of a regular triangular prism is a
triangle ABC with side a. Taken on the lateral
edges are points A,, B;, and C, situated at dis-
tances a/2, a, and 3a/2, respectively, from the
plane of the base. Find the angle between the
planes ABC and A,B,C,.

37. The side of the base of a regular quadran-
gular pyramid is equal to the slant height of a
lateral face. Through a side of the base a cutting
plane is passed separating the surface of the pyra-

* Here and henceforward, ABC and 4,B,C, are the
bases of the prism and 44,, BB,, CC, its 1atera1 edges.
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mid into two equal portions. Find the angle
between the cutting plane and the plane of the
base of the pyramid.

38. The centre of a ball is found in the plane
of the base of a regular triangular pyramid. The
vertices of the base lie on the surface of the ball.
Find the length [ of the line of intersection of the
surfaces of the ball and pyramid if the radius
of the ball is equal to R, and the plane angle at
the vertex of the pyramid is equal to a.

39. In a regular hexagonal pyramid SABCDEF
(S the vertex), on the diagonal AD, three points
are taken which divide the diagonal into four
equal parts. Through these division points sec-
tions are passed parallel to the plane SAB. Find
the ratios of the areas of the obtained sections.

40. In a regular quadrangular pyramid, the
plane angle at the vertex is equal to the angle
between the lateral edges and the plane of the
base. Determine the dihedral angles between the
adjacent lateral faces of this pyramid.

41. The base of a triangular pyramid all of
whose lateral edges are pairwise perpendicular
is a triangle having an area S. The area of one
of the lateral faces is . Find the area of the
projection of this face on the base.

42. ABCA,B,C, is a regular triangular prism
all of whose edges are equal to one another. K
is a point on the edge AB different from A and
B, M is a point on the straight line B,C,, and
L is a point in the plane of the face ACC,4,.
The straight line KL makes equal angles with the
planes ABC and ABB,A,, the line LM makes equal
angles with the planes BCC,B, and ACC,A,,
the line KM also makes equal angles with the
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planes BCC,B, and ACC,4,. It is known that
| KL | = | KM | = 1. Find the edge of the
prism.

43. In a regular quadrangular pyramid, the
angle between the lateral edges and the plane
of the base is equal to the angle between a lateral
edge and a plane of the lateral face not contain-
ing this edge. Find this angle.

44, Find the dihedral angle between the base
and a lateral face of a frustum of a regular tri-
angular pyramid if it is known that a ball can
be inscribed in it, and, besides, there is a ball
which touches all of its edges.

45. Each of three edges of a triangular pyramid
is equal to 1, and each of three other edges is
equal to a. None of the faces is a regular tri-
angle. What is the range of variation of a? What
is the volume of this pyramid?

46. The lateral faces of a triangular pyramid
are equivalent and are inclined to the plane of
the base at angles a, B, and y. Find the ratio of
the radius of the ball inscribed in this pyramid
to the radius of the ball touching the base of
the pyramid and the extensions of the three
lateral faces.

47. All edges of a regular hexagonal prism are
equal to a (each). Find the area of the section
passed through a side of the base at an angle a to
the plane of the base.

48. In a rectangular parallelepiped ABCDA,
ByC1Dy,|AB|=a, | AD | = b, | AA, | = ¢. Find
the angle between the planes A B,D, and A,C,D.

49, The base of the pyramid ABCD M is a square
with base a, the lateral edges AM and BM are
also equal to e (each). The lateral edges CM
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and DM are of length b. On the face CDM as
on the base a triangular pyramid CDMN is con-
structed outwards, each lateral edge of which has

a length a. Find the distance between the
straight lines AD and MN.

50. In a tetrahedron, one edge is equal to a,
the opposite edge to b, and the rest of the edges
to c. Find the radius of the circumscribed ball.

51. The base of a triangular pyramid is a
triangle with sides a, b, and c; the opposite lat-
eral edges of the pyramid are respectively equal
to m, n, and p. Find the distance from the vertex
of the pyramid to the centre of gravity of the
base.

2. Given a cube ABCDA,B,C,D,; through
the edge AA, a plane is passed forming equal
angles with the straight lines BC, and B,D. Find
these angles.

93. The lateral edges of a triangular pyramid
are pairwise perpendicular, one of them being the
sum of two others is equal to a. Find the radius of
the ball touching the base of the pyramid and
the extensions of its lateral faces.

54. The base of a triangular pyramid SABC is
a regular triangle ABC with side a, the edge SA4
is equal to b. Find the volume of the pyramid if
it is known that the lateral faces of the pyramid
are equivalent.

5. The base of a triangular pyramid SABC

is an isosceles triangle ABC (ﬁ = 90°). The angles

N RS 2N
SAB, SCA, SAC, SBA (in the indicated or-

der) form an arithmetic progression whose differ-
ence is not equal to zero. The areas of the faces
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SAB, ABC and SAC form a geometric progres-
sion. Find the angles forming an arithmetic pro-
gression,

56. The base of a triangular pyramid SABC
is a regular triangle ABC with side a. Find the

PN
volume of this pyramid if it is known that ASC =

N\ N\
ASB = a, SAB = f.

57. In the cube ABCDA,B,C,D, K is the mid-
point of the edge AA,, the point L lies on the
edge BC. The line segment KL touches the ball
inscribed in the cube. In what ratio is the line
segment KL divided by the point of tangency?

PN
58. Given a tetrahedron A BCD in which ABC =

7\

BAD = 90°. |AB | =a, | DC | = b, the angle
between the edges AD and BC is equal to a.
Find the radius of the circumscribed ball.

99. An edge of a cube and an edge of a regular
tetrahedron lie on the same straight line, the
midpoints of the opposite edges of the cube and
tetrahedron coincide. Find the volume of the
common part of the cube and tetrahedron if the
edge of the cube is equal to a.

60. In what ratio is the volume of a triangu-
lar pyramid divided by the plane parallel to its
two skew edges and dividing one of the other
edges in the ratio 2 : 1?

61. In a frustum of aregular quadrangular pyr-
amid two sections are drawn: one through the
diagonals of the bases, the other through the side
of the lower base and opposite side of the upper
base. The angle between the cutting planes is
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equal to a. Find the ratio of the areas of the
sections.

62. One cone is inscribed in, and the other is
circumscribed about, a regular hexagonal pyra-
mid. Find the difference between the volumes of
the circumscribed and inscribed cones if the alti
tude of the pyramid is H and the radius of the
base of the circumscribed cone is R.

63. Given a ball and a point inside it. Three
mutually perpendicular planes intersecting the
ball along three circles are passed through this
point in an arbitrary way. Prove that the sum
of the areas of these three circles is constant, and
find this sum if the radius of the ball is R and the
distance from the point of intersection of the
planes to the centre of the ball is equal to d.

64. In a ball of radius R the diameter AB
is drawn. Two straight lines touch the ball at
the points A and B and form an angle a (a << 90°)
between themselves. Taken on these lines are
points C and D so that CD touches the ball, and
the angle between AB and CD equals ¢ (¢ << 90°).
Find the volume of the tetrahedron ABCD.

65. In a tetrahedron two opposite edges are
perpendicular, their lengths are a and b, the dis-
tance between them is ¢. Inscribed in the tetra-
hedron is a cube whose four edges are perpendicu-
lar to these two edges of the tetrahedron, exactly
two vertices of the ‘cube lying on each face of
the tetrahedron. Find the edge of the cube.

66. Two congruent triangles KLM and KLN

P AR
have a common side KL, KLM = LKN = n/3,
| KL | =a, | LM | = | KN | = 6a. The planes
KLM and KLN are mutually perpendicular. A

2=0449



18 Problems in Solid Geometry

ball touches the line segments LM and KN at
their midpoints. Find the radius of the ball.

67. A ball of radius R touches all the lateral
faces of a triangular pyramid at the midpoints of
the sides of its base. The line segment joining the
vertex of the pyramid to the centre of the ball
is bisected by the point of intersection with the
base of the pyramid. Find the volume of the pyra-
mid.

68. A tetrahedron has three right dihedral an-
gles. One of the line segments connecting the mid-
points of opposite edges of the tetrahedron is equal
to a, and the other to b (b > a). Find the length
of the greatest edge of the tetrahedron.

69. A right circular cone with vertex S is in-
scribed in a triangular pyramid SPQR so that
the circle of the base of the cone is inscribed in
the base PQR of the pyramid. It is known that

N N N
PSR = n/2, SQR = n/4, PSQ = Tn/12. Find
the ratio of the lateral surface area of the cone
to the area of the base PQR of the pyramid.
70. The base of the pyramid ABCDE is a par-
allelogram ABCD. None of the lateral faces is
an obtuse triangle. On the edge DC there is
a point M such that the straight line £M is per-
pendicular to BC. In addition, the diagonal of the
base AC and the lateral edges ED and EB are relat-

ed as follows: |AC | >3 |EB | >+ | ED |. A

section representing an isosceles trapezoid is
passed through the vertex B and the midpoint of
one of the lateral edges. Find the ratio of the
area of the section to the area of the base of the

pyramid.
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71. A line segment AB of unit length which is
a chord of a sphere of radius 1 is at an angle n/3
to the diameter CD of this sphere. The distance
from the end point C of the diameter to the nearer

end point A of the chord AB is equal to V2.
Determine the length of the line segment BD.

72, In a triangular pyramid ABCD the faces
ABC and ABD have areas p and ¢, respectively,
and form an angle a between themselves. Find
the area of the section of the pyramid passing
through the edge AB and the centre of the ball
inscribed in the pyramid

73. In a triangular pyramid ABCD a section
is passed through the edge AD (| AD | = a)
and point £ (the midpoint of the edge BC). The
section makes with the faces ACD and ADB
angles respectively equal to a and P. Find the
volume of the pyramid if the area of the section
ADE is equal to S.

74. ABCD is a regular tetrahedron with edge a.
Let M be the centre of the face ADC, and let N
be the midpoint of the edge BC. Find the radius
of the ball inscribed in the trihedral angle A
and touching the straight line MN,

75. The base of a triangular pyramid ABCD
is a regular triangle ABC. The face BCD makes
an angle of 60° with the plane of the base. The
centre of a circle of unit radius which touches
the edges AB, AC, and the face BCD lies on the
straight line passing through the point D per-
pendicular to the basa. The altitude of the pyra-
mid DH is one-half the side of the base. Find
the volume of the pyramid.

76, In a triangular pyramid SABC | AC | =
| AB | and the edge SA is inclined to the planes



20 Problems in Solid Geometry

of the faces ABC and SBC at angles of 45°. It is
known that the vertex A and the midpoints of all
the edges of the pyramid, except SA, lie on the
sphere of radius 1. Prove that the centre of the
sphere is located on the edge SA4, and find the
area of the face ASC.

77. Given a cube ABCDA,B,C,D, with edge a.
Find the radius of the sphere touching the line
segments AC; and CC,, the straight lines AB
and BC and intersecting the straight lines AC
and AlC'l.

78. A ball touches the plane of the base ABCD
of a regular quadrangular pyramid SABCD at
the point A, and, besides, it touches the ball
inscribed in the pyramid. A cutting plane is
passed through the centre of the first ball and the
side BC of the base. Find the angle of inclination
of this plane to the plane of the base if it is known
that the diagonals of the section are perpen-
dicular to the edges SA and SD.

79. Situated on a sphere of radius 2 are three
circles of radius 4 each of which touches the other
two. Find the radius of the circle which is smal-
ler than the given circles, lies on the given sphere,
and touches each of the given circles.

80. In a given rectangular  parallelepiped
ABCDA,B,C,D, the lengths of the edges AB,
BC, and BB, are respectively equal to 2a, a,
and a; E is the midpoint of the edge BC. The
vertices M and N of a regular tetrahedron MNPQ
lie on the straight line C,E, the vertices P and
Q on the straight line passing through the point B,
and intersecting the straight line AD at the
point F. Find: (a) the length of the line segment
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DF; (b) the distance between the midpoints of
the line segments MN and PQ.

81. The length of the edge of a cube
ABCDA,B,C,D, is a. The points M and N lie
on the line segments BD and CC,, respectively.
The straight line M N makes an angle n/4 with
the plane ABCD and an angle n/6 with the plane
BB,C,C. Find: (a) the length of the line seg-
ment MN; (b) the radius of the sphere with centre
on the line segment M N which touches the planes
ABCD and BB,C,C.

82, The vertex A of aregular prism ABCA,B,C,
coincides with the vertex of a cone; the vertices
B and C lie on the lateral surface of this cone,
and the vertices B, and C, on the circle of its
base. Find the ratio of the volume of the cone and
the prism if | A4, | =2.41AB|.

83. The length of the edge of a cube
ABCDA;B,C,D, is equal to a. The points P,
K, L are midpoints of the edges AA4,, A,D,,
B,C,, respectively; the point Q is the centre of
the face CC,D,D. The line segment MN with
end points on the straight lines AD and KL
intersects the line PQ and is perpendicular to it.
Find the length of this line segment.

84. In a regular prism ABCA,B,C, the length
of a lateral edge and the altitude of the base is
equal to a. Two planes are passed through the
vertex A: one perpendicular to the straight line
AB,;, the other perpendicular to the line AC,.
Passed through the vertex 4, are also two planes:
one perpendicular to the line A4,B, the other
perpendicular to the line A,C. Find the volume of
the polyhedron bounded by these four planes and’
the plane BB,C,C, '
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85. The point O is a common vertex of two
congruent cones situated on one side of the plane a
so that only one element of each cone (OA for
one cone and OB for the other) belongs to the
plane a. It is known that the size of the angle
between the altitudes of the cones is equal to 8,
and the size of the angle between the altitude
and generatrix of the cone is equal to ¢, and
2¢p << B. Find the size of the angle between the
element OA and the plane of the base of the other
cone to which the point B belongs.

86. Arranged inside a regular tetrahedron
ABCD are two balls of radii 2R and 3R exter-
nally tangent to each other, one ball being in-
scribed in the trihedral angle of the tetrahedron
with vertex at the point A, and the other in the
trihedral angle with vertex at the point B. Find
the length of the edge of this tetrahedron.

87. In a regular quadrangular pyramid SABCD
with base ABCD, the side of the base is equal to
a, and the angle between the lateral edges and
the plane of the base is equal to a. The plane
parallel to the diagonal of the base AC and the
lateral edge BS cuts the pyramid so that a circle
can be inscribed in the section obtained. Deter-
mine the radius of this circle.

88. Each edge of a regular tetrahedron is equal
to a. A plane P passes through the vertex B and
midpoints of the edges AC and AD. A ball
touches the straight lines AB, AC, AD and the
portion of the plane P enclosed inside the tetra-
hedron. Find the radius of the ball.

89. In a regular tetrahedron, M and N are
midpoints of two opposite edges. The projection
of the tetrahedron on a plane parallel to MY
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is a quadrilateral having area S one of the angles
of which is equal to 60°. Find the surface area
of the tetrahedron.

90. In a cube ABCDA,B,C,D, a point M is
taken on AC, and on the diagonal BD, of the

PN
cube a point N is taken so that NVMC = 60°,

N

MNB = 45°. In what ratios are the line seg-
ments AC and BD, divided by the points M and
N?

91. The base of a right prism ABCDA,B,C.D,
is an isosceles trapezoid ABCD in which AD
is parallel to BC, | 4D |/|BC | = n, n > 1.
Passed through the edges A4, and BC are planes
parallel to the diagonal B,D; and through the
edges DD, and B,C, planes parallel to the dia-
gonal A,C. Determine the ratio of the volume
of the triangular pyramid bounded by these four
planes to the volume of the prism.

92. The side of the base of a regular triangular
prism ABCA,B,C, is equal to a. The points M
and N are the respective midpoints of the edges
A,B, and AA,. The projection of the line seg-

ment BM on the line C;N is equal to a/2} 5.
Determine the altitude of the prism.

93. Two balls touch each other and the faces
of a dihedral angle whose size is a. Let A and B
be points at which the balls touch the faces (4
and B belong to different balls and different faces).
In what ratio is the line segment AB divided
by the points of intersection with the surfaces of
the balls?

94. The base of a pyramid ABCD is a regular
triangle A BC with side of length 12. The edge BD
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is perpendicular to the plane of the base and is

equal to 10 7/ 3. All the vertices of this pyramid
lie on the lateral surface of a right circular cylin-
der whose axis intersects the edge BD and the
plane A BC. Determine the radius of the cylinder.

95. The base of a pyramid is a square ABCD
with side a; the lateral edge SC is perpendicular
to the plane of the base and is equal to b. M is
a point on the edge AS. The points M, B, and D
lie on the lateral surface of a right circular cone
with vertex at the point 4, and the point C in
the plane of the base of this cone. Determine the
area of the lateral surface of the cone.

96. Inside aright circular cone a cube is arranged
so that one of its edges lies on the diameter
of the base of the cone; the vertices of the cube not
belonging to this edge lie on the lateral surface
of the cone; the centre of the cube lies on the alti-
tude of the cone. Find the ratio of the volume of
the cone to the volume of the cube.

97. In a triangular prism ABCA,B,C,, two
sections are passed. One section passes through
the edge AB and midpoint of the edge CC,, the
other passing through the edge 4,8, and the mid-
point of the edge CB. Find the ratio of the length
of the line segment of the intersection line of
these sections enclosed inside the prism to the
length of the edge AB.

98. In the tetrahedron ABCD the edge AR

. N /\
is perpendicular to the edge CD, ACB = ADB,
the area of the section passing through the edge
AB and the midpoint of the edge DC is%equal to
S, | DC | = a. Find the volume of the tetra-
hedron ABCD,
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99. Given a regular triangular pyramid S4 BC
(S its vertex). The edge SC of this pyramid coin-
cides with a lateral edge of a regular triangular
pl‘iSm AIBICAngS (AlAg, B132 and CS are
lateral edges, and A,B,C is one of the bases). The
vertices 4, and B, lie in the plane of the face
SAB of the pyramid. What part of the volume
of the entire pyramid is the volume of the portion
of the pyramid lying inside the prism if the ratio
of the length of the lateral edge of the pyramid

to the side of its base is equal to 2/} 3?

100. In a frustum of a regular quadrangular
pyramid with the lateral edges A4,, BB,, CC,,
DD,, the side of the upper base 4,B,C,D, is equal
to 1, and the side of the lower base is equal to 7.
The plane passing through the edge B,C, perpen-
dicular to the plane AD,C separates the pyramid
into two parts of equal volume. Find the volume
of the pyramid.

101. The base of the prism ABCA,B,C, is a reg-
ular triangle ABC with side a. The projection
of the prism on the plane of the base is a trape-
zoid with lateral side A B and area which is twice
the area of the base. The radius of the sphere pas-
sing through the vertices 4, B, 4,, C; is equal
to a. Find the volume of the prism.

102. Given in a plane is a square ABCD with
side a and a point M lying at a distance b from
its centre. Find the sum of the volumes of the
solids generated by revolving the triangles ABM,
BCM, CDM, and DAM about the straight lines
AB, BC, CD and DA, respectively.

103. D is the midpoint of the edge A,C, of
a regular triangular prism ABCA,B,C,. A regular
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triangular pyramid SMNP is situated so that
the plane of its base MNP coincides with the
plane A BC, the vertex M lies on the extension of

ACand |CM | = —;— | AC |, the edge SN passes

through the point D, and the edge SP intersects
the line segment BB,. In what ratio is the line
segment BB, divided by the point of intersection?

104. The centres of three spheres of radii 3,
4, and 6 are situated at the vertices of a regular
triangle with side 11. How many planes are there
which simultaneously touch all the three spheres?

105. All the plane angles 6f a trihedral angle
NKLM (N the vertex) are right ones. On the
face LNM a point P is taken at a distance 2
from the vertex N and at a distance 1 from the
edge MN. From some point S situated inside the
trihedral angle NKXLM a beam of light is directed
towards the point P. The beam makes an angle
n/4 with the plane MNK and equal angles with
the edges KN and MN. The beam is mirror-
reflected from the faces of the angle NKLM first
at the point P, then at the point Q, and then at
the point R. Find the sum of the lengths of the
line segments PQ and QR.

106. The base of a triangular pyramid A BCD
is a triangle ABC in which A= /2, C = 1t/6,

| BC | =2 V 2. The edges AD, BD, and CD
are of the same length. A sphere of radius 1 touches
the edges AD, BD, the extension of the edge
CD beyond the point D, and the plane ABC.
Find the length of the line segment of the tangent
drawn from the point A to the sphere.

107, Three balls, among which there are twq
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equal balls, touch a plane P and, besides, pair-
wise touch one another. The vertex of a right
circular cone belongs to the plane P, and its
axis is perpendicular to this plane. All the three
balls are arranged outside of the cone and each of
them touches its lateral surface. Find the cosine
of the angle between the generatrix of the cone
and the plane P if it is known that in the tri-
angle with vertices at the points of tangency of
the ba(l)ls with the plane one of the angles is equal
to 150°.

108. The volume of the tetrahedron ABCD
is equal to 5. Through the midpoints of the edges
AD and BC a plane is passed cutting the edge
CD at the point M. And the ratio of the lengths
of the line segments DM and CM is equal to
2/3. Compute the area of the section of the tetra-
hedron by the plane if the distance from it to
the vertex A4 is equal to 1.

109. A ball of radius 2 is inscribed in a regular
triangular pyramid SA4 BC with vertex S and base
ABC; the altitude of the pyramid SK is equal
to 6. Prove that there is a unique plane cutting
the edges of the base A B and BC at some points M
and N, such that | MN | = 7, which touches the
ball at the point equidistant from the points M
and N and intersects the extension of the altitude
of the pyramid SK beyond the point K at some
point D. Find the length of the line segment SD.

110. All the edges of a triangular pyramid
ABCD are tangent to a sphere. Three line seg-
ments joining the midpoints of skew edges have
the same length. The angle 4 BC is equal to 100°.
Find the ratio of the altitudes of the pyramid
drawn from the vertices 4 and B,
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111. In a pyramid SABC the products of the
lengths of the edges of each of the four faces are
equal to one and the same number. The length
of the altitude of the pyramid dropped from §
onto the face ABC is equal to 2 ‘/%%%, and the
size of the angle CAB is equal to

arccos (—é— 122-) Find the volume of the
pyramid SABC if
| SA 24+ | SB12—51]S8C |? = 60.

112. Given in a plane P is an isosceles tri-
angle ABC (|AB | = |BC | =1, | AC | = 2a).
A sphere of radius r touches the plane P at point
B. Two skew lines pass through the points A
and C and are tangent to the ball. The angle
between either of these lines and the plane P
{s equal to a. Find the distance between these
ines.

113. The base of a pyramid ABCEH is a con-
vex quadrilateral A BCE which is separated by
the diagonal BE into two equivalent triangles.
The length of the edge ABisequal to1, thelengths
of the edges BC and CE are equal to each
other. The sum of the lengths of the edges AH

and EH is equal to J/ 2. The volume of the pyra-
mid is 1/6. Find the radius of the sphere having
the greatest volume among all the balls housed
in the pyramid.

114. In a pyramid SABC a straight line inter-
secting the edges AC and BS and perpendicular
to them passes through the midpoint of the edge
BS. The face ASB is equivalent to the face BSC,
and the area of the face ASC is twice the area of
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the face BSC. Inside the pyramid there is a point
M, and the sum of the distances from this point
to the vertices B and S is equal to the sum of the
distances to all the faces of the pyramid. Find
the distance from the point M to the vertex B
if |AC| =YV 6, |BS|=1.

115. The base of a pyramid is a rectangle with
acute angle between the diagonals a (a << 60°),
its lateral edges are of the same length, and the
altitude is k. Situated inside the pyramid is a
triangular pyramid whose vertex coincides with
the vertex of the first pyramid, and the vertices
of the base lie on three sides of the rectangle.
Find the volume of the quadrangular pyramid if
all the edges of the triangular pyramid are equal to
one another, and the lateral faces are equivalent.

116. In a triangular pyramid SABC with hase
ABC and equal lateral edges, the sum of the
dihedral angles with edges S4 and SC is equal
to 180°. It is known that | AB | =a, | BC | = b.
Find the length of the lateral edge.

117. Given a regular tetrahedron with edge a.
A sphere touches three edges of the tetrahedron,
emanating from one vertex, at their end points.
Find the area of the portion of the spherical sur-
face enclosed inside the tetrahedron.

118. Three circles of radius } 2 pairwise touch-
ing one another are situated on the surface
of a sphere of radius 2. The portion of the sphere’s
surface situated outside of the circles presents
two curvilinear triangles. Find the areas of
these triangles.

119. Three dihedral angles of a tetrahedron,
not belonging to one vertex, are equal to /2.
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The remaining three dihedral angles are equal
to one another. Find these angles.

120. Two balls are inscribed in the lateral
surface of a cone and touch each other. A third
sphere passes through two circles along which the
first two spheres touch the surface of the cone.
Prove that the volume of the portion of the third
ball situated outside of the cone is equal to the
volume of the portion of the cone enclosed be-
tween the first two balls inside the cone.

121. A sphere of radius R touches one base of
a frustum of a cone and its lateral surface along
the circle coinciding with the circle of the other
base of the cone. Find the volume of the solid
representing a combination of a cone and a ball
if the total surface area of this solid is equal to S.

122. Two triangles, a regular one with side a
and a right isosceles triangle with legs equal
to b, are arranged in space so that their centroids
coincide. Find the sum of the squared distances
from all the vertices of one of them to all the
vertices of the other.

123. In a regular triangular pyramid S4BC
(S the vertex), E is the midpoint of the slant
height of the face SBC, and the points F, L,
and M lie on the edges AB, AC, and SC, respec-

tively, and | AL | = & | AC |. It is known that

EFLM is an isosceles trapezoid and the length
of its base EF is equal to }/ 7. Find the volume
of the pyramid.

124. Given a cube ABCDA,B,C,D, with edge a.
The bases of a cylinder are inscribed in the faces
ABCD and A.B,C,D,. Let M be a point on the
edge AB such that | AM | = a/3, N a point on
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the edge B,C, such that | NC, | = a/4. Through
the points C; and M there passes a plane touch-
ing the bases of the cylinder inscribed in A BCD,
and through A and N a plane touching the base
inscribed in 4,B,C,D,. Find the volume of the
portion of the cylinder enclosed between the
planes.

125. Determine the total surface area of the
prism circumscribed about a sphere if the area of
its base is equal to S.

126. The centre of sphere a lies on the surface
of sphere B. The ratio of the surface area of sphere f
lying inside sphere a to the total surface area of
sphere a is equal to 1/5. Find the ratio of the radii
of spheres a and .

127. Circumscribed about a ball is a frustum
of a cone. The total surface area of this cone is S.
Another sphere touches the lateral surface of
the cone along the circle of the base of the cone.
Find the volume of the frustum of a cone if it
is known that the portion of the surface of the
second ball contained inside the first ball has
an area Q.

128. Circumscribed about a ball is a frustum
of a cone whose bases are the great circles of two
other balls. Determine the total surface area of
the frustum of a cone if the sum of the surface
areas of the three balls is equal to S.

129. A section of maximal area is passed
through the vertex of a right circular cone. It is
known that the area of this section is twice the
area of an axial section. Find the vertex angle
of the axial section of the cone.

130. Inscribed in a cone is a triangular pyra-
mid SABC (S coincides with the vertex of the
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cone, A, B, and C lie on the circle of the base of
the cone), the dihedral angles at the edges SA4,
SB, and SC are respectively equal to a, f, and y.
Find the angle between the plane SBC and the
plane touching the surface of the cone along the
element SC.

131. Three points 4, B, and C lying on the
surface of a sphere of radius R are pairwise con-
nected by arcs of great circles; the arcs are less
than a semicircle. Through the midpoints of the

arcs AB and AC one more great circle is drawn
which intersects the continuation of BC at the

point K. Find the length of the arc CKif | BC | =
l (I < =xnR).

132. Find the volume of the solid generated
by revolving a regular triangle with side a about
a straight line parallel to its plane and such that
the projection of this line on the plane of the
triangle contains one of the altitudes of the
triangle.

133. Consider the solid consisting of points
situated at a distance not exceeding d from an
arbitrary point inside a plane figure having a
perimeter 2p and area S or on its boundary.
Find the volume of this solid.

134. Given a triangular pyramid SABC. A ball
of radius R touches the plane ABC at the point C
and the edge SA at the point S. The straight
line BS intersects the ball for the second time
at the point opposite to the point C. Find the
volume of the pyramid SABC if | BC | = a,
| SA | = b.

135. Inside a regular triangular pyramid there
is a vertex of a trihedral angle all of whose plane
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angles are right ones, and the bisectors of the
plane angles pass through the vertices of the base.
In what ratio is the volume of the pyramid di-
vided by the surface of this angle if each face
of the pyramid is separated by it into two equiv-
alent portions?

136. Given a parallelepiped ABCDA,B,C,D,
whose volume is V. Find the volume of the com-
mon portion of two tetrahedrons AB,CD, and
A,BCD.

137. Two equal triangular pyramids each hav-
ing volume V are arranged in space symmetri-
cally with respect to the point O. Find the volume
of their common portion if the point O lies on
the line segment joining the vertex of the pyra-
mid to the centroid of the base and divides this
line segment in the ratio: (1) 1:1; (2) 3:1;
(3) 2:1; (4) 4 : 1, reckoning from the vertex.

138. A regular tetrahedron of volume V is rotat-
ed about the straight line joining the midpoints
of its skew edges at an angle _a. Find the volume
of the common portion of the given and turned
tetrahedrons (0 << a << n).

139. The edge of acubeis a. The cube is rotat-
ed about the diagonal through an angle «.
Find the volume of the common portion of the
original cube and the cube being rotated.

140. A ray of light falls on a plane mirror at an
angle a. The mirror is rotated about the projec-
tion of the beam on the mirror through an angle p.
By what angle will the reflected ray deflect?

141. Given in space are four points: 4, B, C,

N
and D, where | AB | = |BC| = |CD |,ABC =
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O 7N
BCD = CDA = a. Find the angle between the
straight lines AC and BD.

142. Given a regular n-gonal prism. The area
of its base is equal to S. Two planes cut all the
lateral edges of the prism so that the volume
of the portion of the prism enclosed between the
planes is equal to V. Find the sum of the lengths
of the segments of the lateral edges of the prism
enclosed between the cutting planes if it is known
that the planes have no common points inside
the prism.

143. Three successive sides of a plane convex
pentagon are equal to 1, 2, and a. Find the two
remaining sides of this pentagon if it is known
that the pentagon is an orthogonal projection on
the plane of regular pentagon. For what values
of a does the problem have a solution?

144. Given a cube ABCDA,B,C,D, in which M
is the centre of the face ABB;A4,, N a point on
the edge B,C;, L the midpoint of A,B,, K the
foot of the perpendicular dropped from N on
BC,. In what ratio is the edge B,C; divided

TN S
by the point N if LMK = MKN?

145. In a regular hexagonal pyramid the centre
of the circumscribed sphere lies on the surface
of the inscribed sphere. Find the ratio of the
radil of the circumscribed and inscribed spheres.

146. In a regular quadrangular pyramid, the
centre of the circumscribed ball lies on the sur-
face of the inscribed ball. Find the size of the
plane angle at the vertex of the pyramid.

147 .The base of a quadrangular pyramid SABCD
is a square ABCD with side a. Both angles be-



iec. 1. Computational Problems 35

ween opposite lateral faces are equal to a. Find
he volume of the pyramid

148. A plane cutting the surface of a triangular
iyramid divides the medians of faces emanating
rom one vertex in the following ratios: 2 : 1,

:2, 4:1 (as measured from the vertex). In
rhat ratio does this plane divide the volume of
his pyramid?

149. n congruent cones have a common vertex.
;ach one touches its two neighbouring cones along
n element, and all the cones touch the same plane.
ind the angle at the vertex of the axial sections
f the cones.

150. Given a cube ABCDA,B,C,D,. The plane
assing through the point 4 and touching the
all inscribed in the cube cuts the edges 4,8,
nd 4,D, at points K and N. Determine the size
f the dihedral angle between the planes AC,K
nd AC,N

151. Given a tetrahedron ABCD. Another
strahedron A,B,C,D, is arranged so that its
ertices A,, B;, C;, D, lie respectively in the
lanes BCD, CDA, DAB, ABC, and the planes
f its faces 4,B,C,, B,C,D,, C\D,A,, D,A;B,
pntain the respective vertices D, 4, B, and C
f the tetrahedron ABCD. It is also known that
1e point A, coincides with the centre of gravity
f the triangle BCD, and the straight lines BD,,
'‘B,, and DC, bisect the line segments AC, AD,
nd AB, respectively. Find the volume of the
smmon part of these tetrahedrons if the volume
f the tetrahedron ABCD is equal to V.

152. In the tetrahedron ABCD: |BC | =
CD|=|DA|, |BD|=|AC|, |BD]|>
BC |, the dihedral angle at the edge AB is
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equal to n/3. Find the sum of the remaining di-
hedral angles.

153. Given a triangular prism ABCA,B,C,.
It is known that the pyramids ABCC,, ABB,C,,
and AA,B,C, are congruent. Find the dihedral
angles between the plane of the base and the lateral
faces of the prism if its base is a nonisosceles right
triangle.

154. In a regular tetrahedron ABCD with
edge/a, taken in the planes BCD, CDA, DAB,
and ABC are the respective points A4,, B,, Cy,
and D, so that the line A,B, is perpendicular to
the plane BCD, B,C, is perpendicular to the plane
CDA, C,D, is perpendicular to the plane DAB,
and finally, D,;4, is perpendicular to the plane
ABC. Find the volume of the tetrahedron
A,BC,D,.

155. n congruent balls of radius R touch inter-
nally the lateral surface and the plane of the
base of a cone, each ball touching two neigh-
bouring balls; n balls of radius 2R are arranged
in a similar way touching externally the lateral
surface of the cone. Find the volume of the cone.

156. Given a cube ABCDA,B,(C,D,. The points
M and N are taken on the line segments A4,
and BC, so that the line MN intersects the line
B,D. Find

|BC,| 14M|
| BN | | 44, -

157. Tt is known that all the faces of a tetra-
hedron are similar triangles, but not all of them
are congruent. Besides, any two faces have at
least one pair of congruent edges not counting
a common edge. Find the volume of this tetra-
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hedron if the lengths of two edges lying in one
face are equal to 3 and 5.

158. Given three mutually perpendicular lines,
the distance between any two of them being equal
to a. Find the volume of the parallelepiped whose
diagonal lies on one line, and the diagonals of
two adjacent faces on two other lines.

159. The section of a regular guadrangular pyr-
amid by some cutting plane presents a regular
pentagon with side a.Find the volume of the pyra-
mid.

160. Given a triangle ABC whose area is S,
and the radius of the circumscribed circle is R.
Erected to the plane of the triangle at the verti-
ces A, B, and C are three perpendiculars, and
points A,, B;, and C; are taken on them so that
the line segments AA4,, BB,, CC, are equal in
length to the respective altitudes of the tri-
angle dropped from the vertices A, B, and C.
Find the volume of the pyramid bounded by the
planes A,B,C. A,BC,. AB,C,, and ABC.

Section 2
Problems on Proof

161. Do the altitudes intersect at one point in
any tetrahedron?

162. Is there a triangular pyramid such that
the feet of all the altitudes lie outside the corre-
sponding faces?
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163. Prove that a straight line making equal
angles with three intersecting lines in a plane
is perpendicular to this plane.

164. What regular polygons can be obtained
when a cube is cut by a plane?

165. Prove that the sum of plane angles of a
trihedral angle is less than 2mx, and the sum of
dihedral angles is greater than .

166. Let the plane angles of a trihedral angle
be equal to a, P, and ¥, and the opposite dihedral
angles to A, B, and C, respectively. Prove that
the following equalities hold true:

(1) sine _ sinf _ siny
sind ~ sinB ~ sinC

(theorem of sines for a trihedral angle),
(2) cosa = cos fcosy - sin P sinycos 4

(first theorem of cosines for a trihedral angle),

(3) cos A = —cos B cos C - sin B sin C cos a

(second theorem of cosines for a trihedral angle).

167. Prove that if all the plane angles of a
trihedral angle are obtuse, then all the dihedral
angles are also obtuse.

168. Prove that if in a trihedral angle all the
dihedral angles are acute, then all the plane an-
gles are also acute.

169. Prove that in an arbitrary tetrahedron
there is a trihedral angle all plane angles of
which are acute.

170. Prove that in an arbitrary polygon all
faces of which are triangles there is an edge such
that all the plane angles adjacent to it are acute.
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171. Prove that a trihedral prismatic surface
can be cut by a plane in a regular triangle.

172. In a triangular pyramid all the plane
angles at the vertex A are right angles, the edge
AB is equal to the sum of two other edges ema-
nating from A. Prove that the sum of the plane
angles at the vertex B is equal to m/2.

173. Can any trihedral angle be cut by a plane
in a regular triangle?

174. Find the plane angles at the vertex of a
trihedral angle if it is known that any of its
sections by a plane is an acute triangle.

175. Prove that in any tetrahedron there is a
vertex such that from the line segments equal
to the lengths of the edges emanating from this
vertex a triangle can be constructed,

176. Prove that any tetrahedron can be cut by
a plane into two parts so that the obtained pieces
can be brought together in a different way to
form the same tetrahedron.

177. Find the plane angles at the vertex of a
trihedral angle if it is known that there exists
another trihedral angle with the same vertex
whose edges lie in the planes forming the faces
of the given angle and are perpendicular to the
opposite edges of the given angle.

178. A straight line I makes acute angles «,
f, and y with three mutually perpendicular
lines. Prove that « +p + y << m.

179. Prove that the sum of the angles made
by the edges of a trihedral angle with opposite
faces is less than the sum of its plane angles.

Prove also that if the plane angles of a tri-
hedral angle are acute, then the sum of the angles
made by its edges with opposite faces is greater
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than one half the sum of the plane angles. Does
the last statement hold for an arbitrary tri-
hedral angle?

180. Prove that the sum of four dihedral angles
of a tetrahedron (excluding any two opposite
angles) is less than 2m, and the sum of all di-
hedral angles of a tetrahedron lies between 2n
and 3.

181. From an arbitrary point of the base of a
regular pyramid a perpendicular is erected.
Prove that the sum of the line segments from
the foot of the perpendicular to the intersection
with the lateral faces or their extensions is con-
stant.

182. Prove that if z,, 25, z,, r, are distances
from an arbitrary point inside a tetrahedron to
its faces, and h,, ks, hy, b, are the corresponding
altitudes of the tetrahedron, then

ettt =1.

183. Prove that the plane passing through the
midpoints of two skew edges of a tetrahedron cuts
it into two parts of equal volumes.

184. Prove that if the base of a pyramid ABCD

, N AN
is a regular triangle ABC, and DAB = DBC =

N
DCA, then ABCD is a regular pyramid.

185. Let a and a;. b and b,, ¢ and ¢; be pairs
of opposite edges of a tetrahedron, and let a,
B, and y be the respective angles between them
(a, B, and y do not exceed 90°). Prove that one
of the three numbers aa; cos a, bb, cos p, and
ccy cos y is the sumr of the other two.
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186. In a tetrahedron ABCD the edges DA,
DB, and DC are equal to the corresponding alti-
tudes of the triangle ABC (DA is equal to the
altitude drawn from the vertex 4, and so forth).
Prove that a sphere passing through three verti-
ces of the tetrahedron intersects the edges ema-
nating from the fourth vertex at three points
which are the vertices of a regular triangle.

187. Given a quadrangular pyramid MABCD
whose base is a convex quadrilateral ABCD.
A plane cuts the edges MA, MB, MC, and MD
at points K, L, P, and N, respectively. Prove
that the following relationship is fulfilled:

| MA | | MC |
Ssep TR T T SADB THBT

| MD | | MB | .
= SABCW"I“SACD'_M_L_"

188. From an arbitrary point in space perpen-
diculars are dropped on the faces of a given cube.
The six line segments thus obtained are diagonals
of six cubes. Prove that six spheres each of which
touches all the edges of the respective cube have
a common tangent line.

189, Given three parallel lines; 4, B, and C
are fixed points on these lines. Let M, N, and L
be the respective points on the same lines situated
on one side of the plane ABC. Prove that if:
(a) the sum of the lengths of the line segments
AM, BN, and CL is constant, or (b) the sum of
the areas of the trapezoids AMNB, BNLC, and
CLMA is constant, then the plane MNL passes
through a fixed point.

190. The sum of the lengths of two skew edges
of a tetrahedron is equal to the sum of the lengths
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of two other skew edges. Prove that the sum of
the dihedral angles whose edges are the first pair
of edges is equal to the sum of the dihedral angles
whose edges are represented by the second pair
of the edges of the tetrahedron.

191. Let O be the centre of a regular tetrahed-
ron. From an arbitrary point M taken on one
of the faces of the tetrahedron perpendiculars
are dropped on its three remaining faces, X, L,
and N being the feet of these perpendiculars. Prove
that the line OM passes through the centre of grav-
ity of the triangle KLN.

192. In a tetrahedron ABCD, the edge CD
is perpendicular to the plane A BC, M is the mid-
point of DB, and N is the midpoint of AB; K

is a point on CD such that | CK | = 13 | CD |.

Prove that the distance between the lines BK
and CN is equal to that between the lines A M and
CN.

193. Taken in the plane of one of the lateral
faces of a regular quadrangular pyramid is an
arbitrary triangle. This triangle is projected on
the base of the pyramid, and the obtained tri-
angle is again projected on a lateral face adjacent
to the given one. Prove that the last projecting
yields a triangle which is similar to the origi-
nally taken.

194. In a tetrahedron ABCD, an arbitrary
point A, is taken in the face BCD. An arbitrary
plane is passed through the vertex A. The straight
lines passing through the vertices B, C. and D
parallel to the line A A4, pierce this plane at points
B,, C,, and D,. Prove that the volume of the tetra-
hedron A,B,C.,D, is equal to the volume of the
tetrahedron ABCD.
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195. Given a tetrahedron ABCD. In the planes
determining its faces, points A,, B;, C,, D, are
taken so that the lines AA;, BB,, CC,, DD, are
parallel to one another. Find the ratio of the
volumes of the tetrahedrons ABCD and 4,B,C,D,.

196. Let D be one of the vertices of a tetrahed-
ron, M its centre of gravity, O the centre of the
circumscribed ball. It is known that the points
D, M and the median points of the faces contain-
ing D lie on the surface of the same sphere.
Prove that the lines DM and OM are mutually
perpendicular.

197. Prove that no solid in space can have even
number of symmetry axes.

198. Given a circle and a point A in space.
Let B be the projection of A on the plane of the
given circle, D an arbitrary point of the circle.
Prove that the projections of B on 4D lie on the
same circle.

199. The base of a pyramid ABCDE is a quad-
rilateral ABCD whose diagonals AC and BD
are mutually perpendicular and intersect at
point M. The line segment ZM is the altitude
of the pyramid. Prove that the projections of the
point M on the lateral faces of the pyramid lie
in one plane.

200. Prove that if the straight line passing
through the centre of gravity of the tetrahedron
ABCD and the centre of the sphere circumscribed
about it intersects the edges AB and CD, then
|AC | =|BD|, | AD | = | BC|.

201. Prove that if the straight line passing
through the centre of gravity of the tetrahedron
ABCD and the centre of the sphere inscribed in
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it intersects the edges AB and CD, then | AC | =
|BD |, |AD | = | BC |.

202. Given a cube ABCDA,B,C:D,. Passed
through the vertex A is a plane touching the
sphere inscribed in the cube. Let M and N be
the points of intersection of this plane and the
lines A,B and A,D. Prove that the line MN is
tangent to the ball inscribed in the cube.

203. Prove that for a tetrahedron in which all
the plane angles at one of its vertex are right
angles the following statement holds true: the
sum of the squared areas of rectangular faces is
equal to the squared area of the fourth face (Py-
thagorean theorem for a rectangular tetrahedron).

204. Prove that the sum of the squared projec-
tions of the edges of a cube on an arbitrary plane
is constant.

205. Prove that the sum of the squared projec-
tions of the edges of a regular tetrahedron on an
arbitrary plane is constant.

206. Two bodies in space move in two straight
lines with constant and unequal velocities. Prove
that there is a fixed circle in space such that the
ratio of distances from any point of this circle to
the bodies is constant and is equal to the ratio
of their velocities.

207. Given a ball and two points 4 and B
outside it. Two intersecting tangents to the ball
are drawn from the points A and B. Prove that
the point of their intersection lies in one of
the two fixed planes.

208. Three balls touch the plane of a given
triangle at its vertices and are tangent to one
another. Prove that if the triangle is scalene,
then there exist two balls touching the three
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given balls and the plane of the triangle, and if
r and p (p > r) are the radii of these balls and R
is the radius of the circle circumscribed about

the triangle, then .;__.._p__. 2V3

209. Given a tetrahedron ABCD One ball
touches the edges AB and CD at points 4 and C,
the other at points B and D. Prove that the pro-
jections of AC and BD on the straight line passing
through the centres of these balls are equal.

210. Is there a space pentagon such that a line
segment joining any two nonadjacent vertices
intersects the plane of the triangle formed by
the remaining three vertices at an interior point
of this triangle?

211. Prove that a pentagon with equal sides
and angles is plane.

212. Given a parallelepiped ABCDA,B,C,D,
whose diagonal AC, is equal to d and its volume
to V. Prove that from the line segments equal
to the distances from the vertices 4,, B, and D
to the diagonal A(C, it is possible to construct
a triangle, and that if s is the area of this tri-
angle, then V = 2ds.

213. Given a tetrahedron ABCD in which A4,,
B, C,, D, are the median points of the faces BCD,
CDA, DAB, and ABC. Prove that there is a
tetrahedron 4 ,B5,C5D4 in which the edges 43855,
B,C,, C3D5 and DyA, are equal and parallel to
the line segments AA4,, BB,, CC,, and DD,, re-
spectively. Find the volume of the tetrahedron
AoBsCoD, if the volume of the tetrahedron ABCD
is equal to V.

214. Given a tetrahedron. Prove that there
is another tetrahedron KLMN whose edges KL,
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LM, MN, and NK are perpendicular to the cor-
responding faces of the given tetrahedron, and
their lengths are numerically equal to the areas
of these faces. Find the volume of the tetrahedron
KLMN if the volume of the given tetrahedron is
equal to V.

215. Given three intersecting spheres. Three
chords belonging to different spheres are drawn
through a point, situated on the chord common
for all the three spheres. Prove that the end points
of the three chords lie on one and the same sphere.

216. A tetrahedron ABCD is cut by a plane
perpendicular to the radius of the circumscribed
sphere drawn towards the vertex D. Prove that
the vertices A, B, C and the points of intersec-
tion of the plane with the edges DA, DB, DC
lie on one and the same sphere.

217. Given a sphere, a circle on the sphere, and
a point P not belonging to the sphere. Prove that
the other points of intersection of the lines, con-
necting the point P and the points on the given
circle, form a circle with the surface of the sphere.

218. Prove that the line of intersection of two
conical surfaces with parallel axes and equal an-
gles of axial sections is a plane curve.

219. Taken on the edges AB, BC, CD, and
DA of the tetrahedron ABCD are points K, L,
M, and N situated in one and the same plane.
Let P be an arbitrary point in space. The lines
PK, PL, PM, and PN intersect once again the
circles circumscribed about the triangles PAB,
PBC, PCD, and PDA at the points Q, R, S, and
T, respectively. Prove that the points P, Q, R,
S, and T lie on the surface of a sphere.

220. Prove that the edges of a tetrahedral angle
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are elements of a cone whose vertex coincides with
the vertex of this angle if and only if the sums
of the opposite dihedral angles of the tetrahedral
angle are equal to each other.

221. Given a hexagon all faces of which are
quadrilaterals. It is known that seven of its
eight vertices lie on the surface of one sphere.
Prove that the eighth vertex also lies on the sur-
face of the same sphere.

222. Taken on each edge of a tetrahedron is an
arbitrary point different from the vertex of the
tetrahedron. Prove that four spheres each of which
passes through one vertex of the tetrahedron and
three points taken on the edges emanating from
this vertex intersect at one point.

Section 3

Problems on Extrema. Geometric
Inequalities

223. Given a dihedral angle. A straight line [
lies in the plane of one of its faces. Prove that
the angle between the line / and the plane of the
other face is maximal when [ is perpendicular to
the edge of this dihedral angle.

224. In a convex quadrihedral angle, each
of the plane angles is equal to 60°. Prove that
the angles between opposite edges ncanot be all
acute or all obtuse.

225. The altitude of a frustum of a pyramid is
equal to £, and the area of the midsection is S.
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What is the range of change of the volume of this
pyramid?

226. Find the greatest value of the volume of
the tetrahedron inscribed in a cylinder the radius
of whose base is R and the altitude is k.

227. The base of a rectangular parallelepiped
ABCDA,B,C,D, is a square ABCD. Find the
greatest possible size of the angle between the
line BD, and the plane BDC,.

228. In a regular quadrangular prism
ABCDA,B,C.D, the altitude is one half the side
of the base. Find the greatest size of the angle
AMC,, where M is a point on the edge AB.

229. The length of the edge of the cube
ABCDA,B,C,D, is equal to 1. On the extension
of the edge AD, a point M is chosen for the point D

so that | AM | =2V 2/5. Point E is the mid-
point of the edge A,B;, and point F is the mid-
point of the edge DD,. What is the greatest value
that can be attained by the ratio | MP |/| PQ |,
where the point P lies on the line segment A,
and the point Q on the line segment CF?

230. The length of the edge of the cube
ABCDA,B,CiD, is equal to a. Points £ and F
are the midpoints of the edges BB; and CC,,
respectively. The triangles are considered whose
vertices are the points of intersection of the plane
parallel to the plane ABCD with the lines AC,,
CE, and DF. Find the smallest value of the areas
of the triangles under consideration.

231. Inscribed in a regular quadrangular pyra-
mid with side of the base and altitude equal to 1
(each) is arectangular parallelepiped whose base
is in the plane of the base of the pyramid, and
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the vertices of the opposite face lie on the lateral
surface of the pyramid. The area of the base of the
parallelepiped is equal to s. What is the range
of variation of the length of the diagonal of the
parallelepiped?

232. The bases of a frustum of a pyramid are
regular triangles ABC and A4,B;C; 3 cm and
2 cm on a side, respectively. The line segment
joining the vertex C; to the centre O of the base
ABC is perpendicular to the bases; | C,0 | = 3.
A plane is passed threugh the vertex B and mid-
points of the edges A,B; and B;C,. Consider the
cylinders situated inside the polyhedron
ABCA;MNC, with bases in the face A,MNC,.
Find: (a) the greatest value of the volumes of
such cylinders with a given altitude h; (b) the
maximal value of the volume among all cylin-
ders under consideration.

233. All edges of a regular triangular prism
ABCA,B,C, have an equal length a. Consider
the line segments with end points on the dia-
gonals BC, and CA, of the lateral faces parallel
to the plane ABB;A,. Find the minimal length
of such line segments.

234. Given a trihedral angle and a point inside
it through which a plane is passed. Prove that the
volume of the tetrahedron formed by the given
angle and the plane will be minimal if the given
point is the centre of gravity of the triangle which
is the section of the trihedral angle by the plane.

235. The surface area of a spherical segment is
equal to S (the spherical part of the segment is
considered here). Find the greatest volume of
this segment.

236. A cube with edge a is placed on a plane.
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A light source is situated at a distance b (b > a)
from the plane. Find the smallest area of the
shadow thrown by the cube onto the plane.

237. Given a convex central-symmetric poly-
hedron. Consider the sections of this polyhedron
parallel to the given plane. Check whether the
following statements are true:

(1) the greatest area is possessed by the section
passing through the centre;

(2) for each section consider the circle of smal-
lest radius containing this section. Is it true that
to the greatest radius of such a circle there cor-
responds the section passing through the centre
of the polyhedron?

238. What is the smallest value which can
be attained by the ratio of the volumes of the
cone and cylinder circumscribed about the same
ball?

239.iTwo cones have a common base and are
arranged on different sides of it. The radius of
the base is r, the altitude of one cone is &, of the
other H (h < H). Find the maximal distance
between two elements of these cones.

240. Given a cube ABCDA,B;C;D, with edge a.
Find the radius of the smallest ball which
touches the straight lines A By, ByC, CD,and DA.

241. The diagonal of a cube whose edge is equal
to 1 lies on the edge of a dihedral angle of size
a (@ << 180°). What is the range of variation
of the volume of the portion of the cube enclosed
inside this angle?

242. The lengths of the edges of a rectangular
parallelepiped are equal to a, b, and c. What is
the greatest value of the area of an orthogonal
projection of this parallelepiped on a plane?
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243. The length of each of five edges of a tetra-
hedron is less than unity. Prove that the volume
of the tetrahedron is less than 1/8.

244, The vertex E of the pyramid ABCE is
found inside the pyramid ABCD. Check whether
the following statements are true:

(1) the sum of the lengths of the edges AE,
BE, and CE is less than that of the edges AD,
BD, and CD;

(2) at least one of the edges AE, BE, CE is
shorter than the corresponding edge AD, BD,
or CD?

245, Let r and R be the respective radii of
the balls inscribed in, and circumscribed about,
a regular quadrangular pyramid. Prove that

R —
‘,.—>V2+1

246. Let R and r be the respective radii of
the balls inscribed in, and circumscribed about,
a tetrahedron. Prove that R > 3r.

247. Two opposite edges of a tetrahedron have
lengths b and ¢, the length of the remaining edges
being equal to a. What is the smallest value of
the sum of distances from an arbitrary point in
space to the vertices of this tetrahedron?

248. Given a frustum of a cone in which the
angle between the generatrix and greater base
is equal to 60°. Prove that the shortest path over
the surface of the cone between a point on the
boundary of one base and the diametrically op-
posite point of the other base has a length of
2R, where R is the radius of the greater base.
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249. Let a, b, and ¢ be three arbitrary vectors,
Prove that

la[+|b|l+[el+la+b-+c]
= lat+bj+ibdc|+jc+al

250. Given a cube ABCDAB,C;D4 with edge a.
Taken on the line A4, is a point M, and on the
line BC a point N so that the line M N intersects
the edge C;D;. Find the smallest value of the
quantity | MN |.

251. The base of a quadrangular pyramid is
a rectangle one side of which is equal to a, the
length of each lateral edge of the pyramid is
equal to b. Find the greatest value of the volume
of such pyramids.

252. Given a cube ABCDA,B,C,D, with edge a.
Find the length of the shortest possible segment
whose end points are situated on the lines AB,
and BC,; making an angle of 60° with the plane
of the face ABCD.

253. Three equal cylindrical surfaces of ra-
dius R with mutually perpendicular axes touch
one another pairwise.

(a) What is the radius of the smallest ball
touching these cylindrical surfaces?

(b) What is the radius of the greatest cylinder
touching the three given cylindrical surfaces,
whose axis passes inside the triangle with vertices
at the points of tangency of the three given
cylinders?

254. Two vertices of a tetrahedron are situated

on the surface of the sphere of radius } 10, and
two other vertices on the surface of the sphere
of radius 2 which is concentric with the first
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one. What is the greatest volume of such tetra-
hedrons?

255. Two trihedral angles are arranged so that
the vertex of one of them is equidistant from
the faces of the other and vice versa; the distance
between the vertices is equal to ¢. What is the
minimal volume of the hexahedron bounded by
the faces of these angles if all the plane angles
of one of them are equal to 60° (each), and those
of the other to 90° (each)?

256. What is the greatest volume of the tetra-
hedron ABCD all vertices of which lie on the
surface of a sphere of radius 1, and the edges
AB, BC, CD, and DA are seen from the centre
of the sphere at an angle of 60°?

257. Given a regular tetrahedron with edge a.
Find the radius of such a ball with centre at the
centre of the tetrahedron for which the sum of
the volumes of the part of the tetrahedron found
outside of the ball and the part of the sphere
outside of the tetrahedron reaches its smallest
value.

258. Prove that among triangular pyramids
with a given base and equal altitudes the smal-
lest lateral surface is possessed by the one whose
vertex is projected into the centre of the circle
inscribed in the base.

"+ 259. Given a cube with edge a. Let N be
a point on the diagonal of a lateral face, M
a point on the circle found in the plane of the
base having its centre at the centre of the base
and radius (5/12)%. Find the least value of the
quantity | MN |.

260. (a) The base of the pyramid SABC is
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-\ PN

a triangle ABC in which BAC = A, CBA = B,
the radius of the circle circumscribed about it is
equal to R. The edge SC is perpendicular to the
plane ABC. Find | SC | if it is known that
1/sin @ 4+ 1/sin B — 1/sin y = 41, where a, B,
and y are angles made by the edges SA, SB,
and SC with the planes of the faces SBC, SAC,
and SAB, respectively.

(b) Let a, B, and y be angles made by the
edges of a trihedral angle with the planes of
opposite faces. Prove that 1/sin @ 4 1/sin p —
1/siny > 1.

261. Can a regular tetrahedron with edge 1
pass through a circular hole of radius: (a) 0.45;
(b) 0.44? The thickness of the hole may be neg-
lected.

Section 4
Loci of Points

262. Prove that in an arbitrary trihedral
angle the bisectors of two plane angles and the
angle adjacent to the third plane angle lie in
one plane.

263. Prove that if the lateral surface of a cy-
linder is cut by an inclined plane, and then it
is cut along an element and developed on a plane,
the line of intersection will represent a sinu-
soid. ¢

264. Given on the surface of a cone is a line
different from an element and such that any
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two points of this line can be connected with
an arc belonging to this line and representing
a line segment on the development. How many
points of seli-intersection has this line if the
angle of the axial section of the cone is equal
to a?

265. Three mutually perpendicular lines pass
through the point 0. 4, B, and C are points
on these lines such that

10A | = |OB|=|0C |

Let ! be an arbitrary line passing through O;
A4,, By, and C, points symmetric to the points
A, B, and C with respect to I. Through 4,, B,,
and C; three planes are drawn perpendicular
to the lines 0A, OB, and OC, respectively.
Find the locus of points of intersection of these
planes.

266. Find the locus of the midpoints of line
segments parallel to a given plane whose end
points lie on two skew lines.

267. Given three pairwise skew lines. Find:

(a) the locus of centres of gravity of triangles
ABC with vertices on these lines;

(b) the locus of centres of gravity of triangles
ABC with vertices on these lines whose planes
are parallel to a given plane.

268. Three pairwise skew lines [,, l,, I, are
perpendicular to one and the same straight line
and intersect it. T.et N and M be two points
on the lines I, and I, such that the line ¥ M
intersects the line /;. Find the locus of midpoints
of line segments N M.

269. Given in space are several arbitrary lines
and a point A. Through A a straight line is
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drawn so that the sum of the cosines of the acute
angles made by this line with the given ones
is equal to a given number. Find the locus of
such lines,

270. Given a triangle ABC and a straight
line I. A,, B,, and C, are three arbitrary points
on the line I. Find the locus of centres of gravity
of triangles with vertices at the midpoints of
the line segments 44,, BB,, CC,.

271. Given a straight line I and a point A.
Through A an arbitrary line is drawn which is
skew with . Let M N be a common perpendicular
to this line and to I (M lies on the line passing
through A). Find the locus of points M.

272, Two spheres @ and P touch a third sphere
o at points A and B. A point M is taken
on the sphere a, the line MA pierces the sphere
® at point N, and the line NB pierces the
sphere fp at point K. Find the locus of such
points M for which the line MK touches the
sphere f.

273. Given a plane and two points on one
side of it. Find the locus of centres of spheres
passing through these points and touching the
plane.

274. Find the locus of midpoints of common
tangents to two given spheres.

275. Two lines [/; and 1, touch a sphere. Let M
and N be points on I/, and I, such that the line
MN also touches the same sphere. Find the
locus of points of tangency of the line"'MN
with this sphere.

276. Given in space are a point O and two
straight lines. Find the locus of points M such
that the sum of projections of the line segment
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OM on the given lines is a constant quantity.

277. Given in space are two straight lines and
a point A on one of them; passed through the
given lines are two planes making a right dihed-
ral angle. Find the locus of projections of the
point 4 on the edge of this angle.

278. Given three intersecting planes having
no common line. Find the locus of points such
that the sum of distances from these points to
the given planes is constant.

279. Given a triangle ABC. On the straight
line perpendicular to the plane ABC and passing
through A an arbitrary point D is taken. Find
the locus of points of intersection of the altitudes
of triangles DBC.

280. Given three intersecting planes and
a straight line I. Drawn through a point M
in space is a line parallel to ! and piercing the
given planes at points A, B, and C. Find the
locus of points M such that the sum | AM | -
| BM | 4+ | CM | is constant.

281. Given a triangle ABC. Find the locus of
points M such that the straight line joining the
centre of gravity of the pyramid ABCM to the
centre of the sphere circumscribed about it
intersects the edges AC and BM.

282. A trihedral angle is cut by two planes
parallel to a given plane. Let the first plane cut
the edges of the trihedral angle at points A4, B,
and C, and the second at points A4, B;, and C;
(identical letters denote points belonging to one
and the same edge). Find the locus of points
of intersection of the planes AB(C;, AB;C, and
A,BC.

283. Given a plane quadrilateral ABCD. Find
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the locus of points M such that the lateral surface
of the pyramid ABCDM can be cut by a plane
so that the section thus obtained is: (a) a rectan-
gle, (b) a rhombus, (c) a square; (d) in the pre-
ceding case find the locus of centres of squares.

284. Given a plane triangle ABC. Find the
locus of points M in space such that the straight
line connecting the centre of the sphere circum-
scribed about ABCM with G as the centre of
gravity of the tetrahedron ABCM is perpendic-
ular to the plane AMG.

285. A circle of constant radius displaces
touching the faces of a trihedral angle all the
plane angles of which are equal to 90° (each).
Find the locus of centres of these circles.

286. A spider sits in one of the vertices of
a cube whose edge is 1 cm long. It crawls over
the surface of the cube with a speed of 1 cm/s.
Find the locus of points on the surface of the
cube such that can be reached by the spider in
two seconds.

287. Given a trihedral angle each of whose
plane angles is equal to 90°, O is the vertex of
this angle. Consider all possible polygonal lines
of length a beginning at the point O and such
that any plane parallel to one of the faces of
the angle cuts this polygonal line not more than
at one point. Find the locus of end points of
this polygonal line.

288. Given a ball with centre O. Let ABCD
be the pyramid circumscribed about it for which
the following inequalities are fulfilled: | 04 | >
|OB | > |0OC | > | OD |. Find the locus of
points A, B, C, and D.

289. Given a triangle ABC. Find the locus of
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points M in space such that from the line seg-
ments MA, MB, and MC a right triangle can
be formed.

290. On the surface of the Earth there are
points the geographical latitude of which is
equal to their longitude. Find the locus of the
projections of all these points on the plane of
the equator.

291. Given a right circular cone and a point A
outside it found at a distance numerically equal
to the altitude of the cone from the plane of its
base. Let M be a point on the cone such that
a beam of light emanating from A towards M,
being mirror-reflected by the surface of the cone,
will be parallel to the plane of the base. Find
the locus of projections of points M on the plane
of the base of the cone.

292. Drawn arbitrarily through a fixed point P
inside a ball are three mutually perpendicular
rays piercing the surface of the ball at points
A, B, and C. Prove that the median point of
the triangle ABC and the projection of the
point P on the plane ABC describe one and the
same spherical surface.

293. Given a trihedral angle with vertex O
and a point N. An arbitrary sphere passes
through O and N and intersects the_edges of
the trihedral angle at points 4, B, and C. Find
the locus of centres of gravity of triangles ABC.

An Arbitrary Tetrahedron

294. Given an arbitrary tetrahedron and
a point N. Prove that six planes each of which
passes through one edge of the tetrahedron and
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is parallel to the straight line joining N to
the midpoint of the opposite edge intersect at
one point.

295. Prove that six planes each of which
passes through the midpoint of one edge of the
tetrahedron and is perpendicular to the opposite
edge intersect at one point (Monge's point).

296. Prove that if Monge’s point lies in the
plane of some face of a tetrahedron, then the
foot of the altitude dropped on this face is found
on the circle described about it (see the preced-
ing problem).

297. Prove that the sum of squared distances
from an arbitrary point in space to the vertices
of a tetrahedron is equal to the sum of squared
distances between the midpoints of opposite
edges and quadruple square of the distance
from the point to the centre of gravity of the
tetrahedron.

298. Prove that there are at least five and
at most eight spheres in an arbitrary tetrahedron
each of which touches the planes of all its faces.

299, ABCD is a three-dimensional quadrilat-
eral (A, B, C, and D do not lie in one plane).
Prove that there are at least eight balls touching
the lines AB, BC, CD, and DA." Prove also
that if the sum of some two sides of the given
quadrilateral is equal to the sum of two other
sides, then there is an infinitude of such balls.

300. Prove that the product of the lengths
of two opposite edges of a tetrahedron divided
by the product of the sines of the dihedral angles
of the tetrahedron corresponding to these edges
is constant for a given tetrahedron (theorem of
sines).
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301. Let Si, R,', li (i = 1, 2, 3, 4) denote
respectively the areas of faces, the radii of the
circles circumscribed about these faces, and the
distances from the centres of these circles to the
opposite vertices of a tetrahedron. Prove that
for the vertices of the tetrahedron the following
formula is valid:

1 / 1 .
V=3 z2S@-m.

fami

302. Given an arbitrary tetrahedron. Prove
that there exists a triangle whose sides are numer-
ically equal to the products of the lengths of
the opposite sides of the tetrahedron. Let S
denote the area of this triangle, V the volume
of the tetrahedron, R the radius of the sphere
circumscribed about it. Then the following equal-
ity takes place: § = 6VR (Crelle’s formula).

303. Let a and b denote the lengths of two
skew edges of a tetrahedron, a and P the sizes
of the corresponding dihedral angles. Prove that
the expression

a® -+ b® 4 2ab cot a cot P

is independent of the choice of the edges (Bret-
schneider’s theorem).

An Equifaced Tetrahedron

304. A tetrahedron is said to be equifaced if all
of its faces are congruent triangles or, which is
the same, if opposite edges of the tetrahedron
are pairwise equal. Prove that for a tetrahedron
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to be equifaced, it is necessary and sufficient
that any of the following conditions he fulfilleds

(a) the sums of plane angles at any of the three
vertices of a tetrahedron are equal to 180°%

(b) the sums of plane angles at some two verti-
ces of a tetrahedron are equal to 480°, and, be-
sides, some two opposite edges are equal;

(c¢) the sum of plane angles at some vertex
of a tetrahedron is equal to 180° and, besides,
the tetrahedron has two pairs of equal opposite
edges;

N\
(d) the following equality is fulfilled ABC =

AN N SN _
ADC = BAD = BCD, where ABCD is a given

tetrahedron;

(e) all the faces are equivalent;

(f) the centres of the inscribed and circum-
scribed spheres coincide;

(2) the line segments joining the midpoints
of opposite edges are perpendicular;

(h) the centre of gravity coincides with the
centre of the circumscribed sphere;

(i) the centre of gravity coincides with the
centre of the inscribed sphere.

305. Prove that the sum of cosines of the
dihedral angles of a tetrahedron is positive and
does not exceed 2, the equality of this sum to 2 is
characteristic only of equifaced tetrahedronms.

306. The sum of the plane angles of a trihedral
angle is equal to 480°. Find the sum of the co-
sines of the dihedral angles of this trihedral angle.

307. Prove that for an equifaced tetrahedron

(a) the radius of the inscribed ball is half the
radius of the ball which touches one face of the
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tetrahedron and the extensions of three other
faces (such ball is called externally inscribed);

(b) the centres of four externally inscribed
balls are the vertices of a tetrahedron congruent
to the given one.

308. Let h denote the altitude of an equifaced
tetrahedron, h, and h; the line segments into
which one of the altitudes of a face is divided
(by the point of intersection of the altitudes of
this face). Prove that h? = 4hhs. Prove also
that the foot of the altitude of the tetrahedron
and the point of intersection of the altitudes of
the face on which this altitude is dropped are
symmetric with respect to the centre of the
circle circumscribed about this face,

309. Prove that in an equifaced tetrahedron
the feet of the altitudes, the midpoints of the
altitudes, and the points of intersection of the
altitudes of faces lie on the surface of one and
the same sphere (12-point sphere).

310. A circle and a point M are given in
a plane. The point lies within the circle less
than 4/3 of the radius from its centre. Let A BC
denote an arbitrary triangle inscribed in a given
circle with centre of gravity at the point M.
Prove that there are two fixed points in space
(D and D') symmetric with respect to the given
plane such that the tetrahedrons ABCD and
ABCD’ are equifaced.

311. A square ABCD is given in a plane,
Two points P and Q are taken on the sides BC
and CDsothat |CP |+ |CQ | = | AB |.Let M
denote a point in space such that in the tetra-
hedron 4 PQM all the faces are congruent trian-
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gles. Determine the locus of projections of points
M on the plane perpendicular to the plane of
the square and passing through the diagonal AC.

An Orthocentrie Tetrahedron

312. In order for the altitudes of a'tetrahedron
to intersect at one point (such a tetrahedron is
called orthocentric), it is necessary and suffi-
cient that:

(a) opposite edges of the tetrahedron be mu-
tually perpendicular;

(b) one altitude of the tetrahedron pass through
the point of intersection of the altitudes of the
base:

(c) the sums of the squares of skew edges be
equal;

(d) the line segments connecting the midpoints
of skew edges be of equal length;

(e) the products of the cosines of opposite
dihedral angles be equal;

(f) the angles between opposite edges be equal.

313. Prove that in an orthocentric tetrahedron
the centre of gravity lies at the midpoint of the
line segment joining the centre of the circum-
scribed sphere to the point of intersection of the
altitudes.

314. Prove that in an orthocentric tetrahedron
the following relationship is fulfilled:

| OH |* = 4R?® — 302,
where O denotes the centre of the circumscribed

sphere, H the point of intersection of the alti-
tudes, R the radius of the circumscribed sphere,
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t the distance between the midpoints of the
skew edges of the tetrahedron.

315. Prove that in an orthocentric tetrahedron
the plane angles adjacent to one vertex are all
acute or all obtuse.

316. Prove that in an orthocentric tetrahedron
the circles of nine points of each face belong
to one sphere (24-point sphere).

317. Prove that in an orthocentric tetrahedron
the centres of gravity and the points of inter-
section of the altitudes of faces, as well as the
points dividing the line segments of each alti-
tude of the tetrahedron from the vertex to the
point of intersection of the altitudes in the ratio
2 :1, lie on one and the same sphere (12-point
sphere).

318. Let H denote the point of intersection of
altitudes of an orthocentric tetrahedron, M
the centre of gravity of some face, and N one
of the points of intersection of the line HM
with the sphere circumscribed about the tetra-
hedron (M lies between H and N). Prove that
| MN | =2 | HM |.

319. Let G denote the centre of gravity of an
orthocentric tetrahedron, /' the foot of a certain
altitude, K one of the points of intersection of
the straight line /G with the sphere circumscribed
about the tetrahedron (G lies between K
and F). Prove that | KG | = 3 | FG|.

An Arbitrary Polyhedron. The Sphere

320. Prove that on a sphere it is impossible
to arrange three arcs of great circles 3U0° each
so that no two have common points.

321. Prove that the shortest line connecting



66 Problems in Solid Geometry

two points on the surface of a sphere is the
smaller arc of the great circle passing through
these points. (Considered here are lines passing
over the surface of the sphere.)

322. Given a polyhedron with equal edges
which touch a sphere. Check to see whether
there always exists a sphere circumscribed about
this polyhedron.

323. Find the area of the triangle formed by
the surface of a sphere of radius R intersecting
a trihedral angle whose dihedral angles are
equal to a, B, and y, and whose vertex coincides
with the centre of the sphere.

324. Let M denote the number of faces, K the
number of edges, N the number of vertices of
a convex polyhedron. Prove that

M—K-+ N =2.

(Euler was the first to obtain this relationship;
it is true not only for convex polyhedra, but
also for a broader class of so-called simply-con-
nected polyhedra.)

325. Given on the surface of a sphere is a cir-
cle. Prove that of all spherical n-gons containing
the given circle inside themselves, a regular
spherical n-gon has the smallest area.

326. Prove that in any convex polyhedron
there is a face having less than six sides.

327. Prove that in any convex polyhedron
there is either a triangular face or a vertex at
which three edges meet.

328. Prove that a convex polyhedron cannot
have seven edges. Prove also that for any n > 6,
n = 7 there is a polyhedron having n edges.

329. Prove that in any convex polyhedron
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there are two faces with equal number of sides.

330. Found inside a sphere of radius 1 is
a convex polyhedron all dihedral angles of which
are less than 2m/3. Prove that the sum of the
lengths of the edges of this polyhedron is less
than 24.

331. The centre of a sphere of radius R is
situated outside a dihedral angle of size a at
a distance a (@ << R) from its edge and lies in
the plane of one of its faces. Find the area of
the part of a sphere enclosed inside the angle.

332. A ball of radius R touches the edges of
a tetrahedral angle each of whose plane angles
is equal to 60°, The surface of the ball inside
the angle consists of two curvilinear quadrilat-
erals. Find the areas of these quadrilaterals.

333. Given a cube with edge a. Determine the
areas of the parts of the sphere circumscribed
about this cube into which it is separated by
the planes of the faces of the cube.

334. Given a convex polyhedron. Some of its
faces are painted black, no two painted faces
having a common edge, and their number being
more than half the number of all the faces of
the polyhedron. Prove that it is impossible to
inscribe a ball in this polyhedron.

335. What is the greatest number of balls
with a radius of 7 that can simultaneously touch
a ball with a radius of 3 without intersecting
one another.

An Outlet into Space

336. Taken on the sides BC and CD of the
square ABCD are points M and N so that
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|CM |+ |CN | = | AB |. The lines AM and
AN divide the diagonal BD into three segments,
Prove that a triangle can always be formed from
these segments, one angle of this triangle being
equal to 60°,

337. Given in a plane are a triangle ABC and
a point P. A straight line / intersects the lines
AB, BC, and CA at points C,, 4,, and B,,
respectively. The lines PC,, PA,, and PB,
intersect the circles circumscribed respectively
about the triangles PAB, PBC, and PAC at
the respective points C,, A5, and B, different
from the point P. Prove that the points P, A4,,
B,, C, lie on one and the same circle.

338. Prove that the diagonals, connecting
opposite vertices of the hexagon circumscribed
about a circle, intersect at one point (Brianchon’s
theorem).

339. Two triangles A,B,C, and A:B;C, are
arranged in a plane so that the lines 4,4, BB,
and C,C, intersect at one point. Prove that the
three points of intersection of the following
three pairs of lines: 4,B; and A.B,, B;C, and
B,C,, C;A, and C,As are collinear (that is, in
one straight line) (Desargues’ theorem).

340. Three planes in space intersect along one
straight line. Three trihedral angles are arranged
so that their vertices lie on this line, and the
edges in the given planes (it is supposed that the
corresponding edges, that is, the edges lying
in one plane, do not intersect at one point).
Prove that the three points of intersection of
the corresponding faces of these angles are col-
linear.



Answers, Hints, Solutions

Section 1

31/ 6 3 3
1. i—l/}— 2 4h 3. 5+V5 a3. 4. 4ad,

108 ° T45 24
54273 ab be ca
5. n——2arccosT. 6. 2% ' g’ 2p°

7. a l/-% ,@?.
8. The stat¢ment of the problem is obvious for a tri-

angle whose one side lies on the line of intersection of the
planes o and f. Then it is possible to prove its validity
for an arbitrary triangle, and then also for an arbitrary
polygon.,

9. Take the triangles AB,C, and AB,(, for the bases
of the pyramids AB,C,D, and AB,C,D,.

10. The angles under comsideration are equal to the
angles formed by the diagonal of some rectangular parallel-
cpiped with three edges emanating from its end point.

12. Consider the parallelepiped formed by the planes
passing through the edges of the tetrahedron parallel to
opposite edges. (This method of completing a tetrahedron
to get a paralleleﬁiped will be frequently used in further
constructions.) The volume of the tetrahedron is equal
to one third the volume of the parallelepiped (the planes
of the faces of the tetrahedron cut off the parallelepiped
four triangular pyramids, the volume of each of them
being equal to one sixth the volume of the parallelepiped),
and the volume of the parallelepiped is readily expressed
in terms of the given quantities, since the diagonals of its
faces are equal and parallel (or, simply, coincide) to the
corresponding edges of the tetrahedron, and the altitude
of the parallelepiped is equal to the distance between the
corresponding edges of the tetrahcdron.

13. It is easy to see that each of thesc relationships
(between the areas of the faces and the line segments of
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the edge) is equal to the ratio of the volumes of two tetra-
hedrons into which the given tetrahedron is separated by
the bisecting plane.

14. Joining the centres of the sphere to the vertices
of the polyhedron, divide it into pyramids whose bases are
the faces of the polyhedron, and whose altitudes are equal
to the radius of the sphere.

15. It is easy to verify the validity of the given for-
mula for a tetrahedron. Here, two cases must be consid-
ered: (1) three vertices of the tetrahedron lie inone plane
and one vertex in the other; (2) two vertices of the tetra-
hedron lie in one plane and two in the other. In the second
case, use the formula for the volume of a tetrahedron from
Problem 12. &

Then note that an arbitrary convex polyhedron can be
broken into tetrahedrons whose vertices coincide with
those of the polyhedron. This statement is sufficiently
obvious, although its proof is rather awkward. Moreover,
the suggested formula is also true for nonconvex polyhedra
of the indicated type, as well as forsolidsenclosed between
two parallel planes for which the area of the section
by a plane parallel to these planes is a quadratic function
of the distance to one of them. This formula is named
Simpson’s formula.

16. Since the described frustum of a cone may be consid-
ered as the limit of frustums of pyramids circumscribed
about the same sphere, for the volume of a frustum of a
cone the formula from Problem 14 holds true.

17. First prove the following auxiliary statement.
Let the line segment 4B rotate about the line 7 (! does not
intersect AB). The perpendicular erected to AB at the
midpoint of AB (point C) intersects the line ! at point O;
MN is the projection of AB on the line . Then the area of
the surface generated by revolving AB about ! is equal to
2n CO) - | MN|.

surface generated by revolving AB represents the
lateral surface of the frustum of a cone with radii of the
bases BN and A M, altitude | MN |, and generatrix A B,
Through A draw a straight line parallel to I, and denote
by L the point of its intersection with the perpendicular
BN dropped from B on I, | MN | = | AL |. Denole the
projection of € on ! by K. Note that the triangles ABL
and COK are similar to each other. This taken into
consideration, the lateral surface of the frustum of a cone
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fs equal to

. IBNI—;-IAMI

=27 |CO|-| AL |=2n|CO|-| MN |.

Now, with theaid of the limit passage, it is easy to get the
statement of our problem. (If the spherical zone under

el

consideration is obtained by revolving a certain arc 4B
of a circle about its diameter, then the surface area of
this zone is equal to the limit of the area of the surface
generated by rotating about the same diameter the polygo-
nal line AL,L,. . .L, B all vertices of which lie on AB pro-
vided that the length of the longest link tends to zero.)
18. Let AB be the chord of the given segment, and O
the centre of the circle. Denote by 2 the distance from O
to AB, and by R the radius of the circle. Then the volume
of the solid generated by rotating the sector AOB about
the diameter will be equal to the product of the area of

N’

the surface obtained by revolving the arc AB (see Problem
17) by R/3, that is, this volume is equal to

1 9, __ 2 9y @Y, 1 _ . . 2 _ .,
32nRh—-3u(x + )h_euah+3mh.
But the second term is equal to the volume of the solid
generated by revolving the triangle A40C about the dia-
meter (see the solution of Problem 17). Hence, the first term
is just the volume of the solid obtained by revolving
the given segment.

19. Place equal loads at the vertices of the pyramid;
to find the centre of gravity of the system, you may proceed
as follows: first find the centre of gravity of three loads
and then, placing a triple load at the found point, find
the centre of gravity of the entire system. You may also
proceed in a different way: first find the centre of grav-
ity of two loads, then of two others and, finally, the
centre of ravit% of the whole system. You may not resort
to a mechanical interpretation, but, simply, consider the
triangle formed by two vertices of the tetrahedron and
the midpoint of the opposite edge.

24. Through each edge of the tetrahedron pass a plane
parallel to the opposite edge (see the solution of Prob-

.| AB |=2x | CK|-| AB|
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-~

lem 12). These planes form a parallelepiped whose edges
are equal to the distances between the midpoints of the
skew edges of the tetrahedron, and the edges of the tetra-
hedron themselves are the diagonals of its faces. Then
take advantage of the fact that in an arbitrary parallelo-
gram the sum of the squared lengths of the diagonals is
equal to the sum of the squared lengths of its sides.

22. If M is the midpoint of BB,, then 4, M is parallel
to CK. Consequently, the desired angle is equal to the
angle MA;D. On the other hand, the plane 4,D M is paral-
lel to CK, hence, the distance between CK andA,D is
equal to the distance from the point K to the plane 4;D M.
Denote the desired distance by z, and the dihedral angle
by ¢. Then we have

v _ 1 1 ad
AMDK — "g‘SA,MD“=‘3‘ S 4, kD0 = 13

]
Hence z— —————— . Find the sides of A A, MD:
4SA1MD

| DM | =~ a.

| AD|=aV2, |AM|=

'

aV'5
2

nof eo

By the theorem of cosines, we find cos cp=—]7~1i~_6-; thus

3

— ] —

2
3 L]

Answer: arccos—1_~, -‘i,
10 3

23, This problem can be solved by the method applied
in Problem 22. Here, we suggest another method for deter-
mining the distance between skew medians. Let ABCD be
the given tetrahedron, K the midpoint of AB, M the
midpoint of AC. Project the tetrahedron on the plane
passing through AB perpendicular to CX. The tetrahedron
is projected into a triangle ABD,, where D, is the projec-
tion of D. If M, is the projection of M (M, is the midpoint
of AK), then the distance between the lines CK and DM
is equal to the distance from the point K to the line D,M,.
The distance is readily found, since D,KM, is a right
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triangle in which the legs D, K and K M, are respectively

equal to a Y'2/3 (altitude of the tetrahedron) and a/4.
The problem has two solutions. To get the second solu-
tion, consider the medians C K and BN, where NN is the mid-
point of DC. s
V10

s L, a2 2
Answer: arccos i 35 and arccos o , & —yr—.

24, 1t follows from the hypothesis that the quadrilat-
eral ABCD is not convex.

Answer: —]{3—3—
(2b+-a)a 4in V41 7
25. Yk 26. —sar 27. a ]/ g -
© a? 20 o, e
28. atbxl 2. 20, ZYiE—a.
30. 24+V3 3. = 822 .
3ah o
— , 33. 2 arccos (sin o sin —) .
2 Htrn+2V) .

34. 12V. 35. 6R*—2a2. 36. —‘Z- 37. arctan (2— V3).

38. If 0<oc<arccos—z— s

I=R ]/27—|—3 tan? % [arctan (3 col %) —a] :

if o> arccoa’.l , 1=0.

i
- 2
39. 25:20: 9. 40. arcces (2— V/'5). 41. %

42. Denote the side of the base and the altitude of the
prism by a, | KB | = z. It follows from the hypothesis
that the projection of K M on the plane of the base is paral-
lel to the bisector of the angle C of the triangle ABC, that
is, | ByM | = 2z, | MC, | = a — 2z. Let L, be the pro-
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jection of L on AC. It is also possible to obtain from the

hypothBSis that LLI = | AL1| "/2l3 9 | LIC I = aq — 22.
Consequently, the quantity | AL; | can take on the follow-
ing values: (1) |AL;|=a— | MC;| =a— (a —
27) =273 (2) |AL,|=a+(a@a—22)=2(a—2z). In
the first case | KL|®=| KL, ,|1® 4 |LL,|%2=a%+4
1022 —4azx; in the second | KL |2 = 6 (¢ — z)%.

In both cases | KM |2 = 32® 4 <.

Solving two systems of equations, we get two respec-
tive values for a:

N Vet v
1 ]/-'9—7 ] 2 . 8
Answer: ! V6+ VM

V_g—'i’ 8 .

43. arctan ]/% .

44, Extend the lateral faces until they intersect.
In doing so, we obtain two similar pyramids whose bases
are the bases of the given frustum of a pyramid. Let a be
the side of the greater base of the frustum, and e the dihed-
ral angle at this base. We can find: the altitude of the

greaterpyramidh = a _1%‘3 tan &, the radiusof the inscribed
ball r =a Q tan 92-, the altitude of the smaller pyra-
mid by =h — 2r = a}./ﬁ_s (tana — 2tana-§),the side

tana—Ztang-

of the smaller base a;, = ha= a , the
h tan

lateral edge of the greater pyramid = ¢ 63 V tanla 1-4,

the lateral edge of the smaller pyramid I, = lh—}:; then

take advantage of the condition of existence of a ball
touching all the edges of a frustum of a pyramid. This
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condition is equivalent to tho existence of a circle inscribed

in a lateral face, that is, the following equality must
be fulfilled:

2@—1) =a-+ q,.

Expressing I, ,, q,, in terms of a and e, we get the equa-
tion

133— V tan? a+4-tan 2 —tano—tan 2 .

2 2

Hence we find tan —02‘—= Vi—ye.
Answer: 2arctan (V' 3—7V 2).
o, VS 113

as=1;
V= V@D G —1—ab).
46, 3—cosa—cos f—cosy
3-4-cosa+-cos Pfcosy’ )
47, 1f 0<oz<—g'—, then S=?;_‘—a:(%/£—; if %‘—ga<

2 -

arctan -]% ’ then S= B c‘:)s 2 (18 cotoo—3 ]/3_

— N 2 T
2V 3cot?a); if arctan 73 <a<3, then S=

2 -
—-_a——— (V' 34cot a) .
¥V 3sina

48 a2b2 - b2c2 — c2q2 )
. arccos( PR b T ok

49. The polyhedron ABMDCN is a triangular prism
with base ABM and lateral edges AD, BC, MN.

b —

L 2__p2
Answer: 32 V 4a®—02.
V &ct—a2b?

50. R= —,
2V &c®—a2—1?
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5. VI T I PP,

52. On the extension of the edfe CC, take a point K
so that BIIK is parallel to BC,, and through the edge BB,

pass a plane parallel to the given (Fig. 1). This plane
hy
i
T/ £y
AI | / Br
1/
| //
V4 ;
A B

Fig. 1

must pass either through the internal or external bisector
of the angle DB;K. Since the ratio in which the plane
passing through BB, divides DK, is equal to the ratio in
which it divides DC, two cases are possible: (1) the plane
passes through a point N on the edge DC such that
| DN |/| NC | = V 37V 2, or (2) it passes through a point
M on its extension, and once again | DM |/| MC | =
V' 3/V 2. Find the distance from the point K to the first
lane. It is equal to the distance from the point C to the
ine BN. If this distance is z, then

e 28pNc ay 2
BN 1 (V349 3)V1u—4 V6
_a(yY6—1)y?2

5
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and _
z _]/6—1
|BK | & 7
where ¢ is the angle between the plane BB;N and lines

B,D and B;K. The other angle is found exactly in the
same manner, B
V61

5 .

53. Let ABCD be the given pyramid whose lateral
edges are: |DA| = a,|DB| ==z, |DC| = y; by the
hypothesis, these edges are mutually perpendicular, and
z 4 y = a. 1t is easy to find that

sin p=

Answer: arcsin

1 1
SA302-§ V a® (225 %)+ 222, VABCD=Faxy-

Ohn the other hand, if R is the radius of the required ball,
then

R
VaBcp= 5 (SpaB+Spec+Sbpca—SaBc)

=—§ [az+ ay+ zy—V a® (22 F y®)+ 2%2]

i

Equating the two expressions for V4 5¢p, we find R=%.

%: 54. It follows from the hypothesis that the vertex S
is projected either into the centre of the circle inscribed
in the triangle ABC or into the centre of the circle exter-
nally inscribed in it. (Anjexternally inscribed circle
touches one side of the triangle and the extensions of two
other sides of the triangle.)

2 —
Answer: if Va:-}— <b<{a, then V= —1% V3rr—az; if

a<b<<aV 8, two answers are possible:
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if 5> a V'3, three answers are possible;

3 21/ 2 —
V1='-1‘52- VI —a?, V== 112/3 Vi —at,

LR P
Ve= d 112/3 V 5T —3qt.

N N NN
55. Let the angles SAB, SCA, SAC, SBA be equal to
@ — 29, @ — @, @, & + @, respectively. By the theorem
of sines, from the triangle SAB we find

|541=148| Gt

and from the triangle SAC we find:

— sin (@ —q)
But, by the hypothesis, | AB | = | AC |. Hence, sin (@ 4

@) = sin (@ — @), whence @ = /2. The condition
relating the areas of the triangles SAB, ABC, and SAC
leads to the equation cot? ¢ cos 2¢ = 1, whence ¢ =

2iarccos (V2—1).

Answer: 3;-— arccos (Y 2—1), %—% arccos(y 2—1),

u -

56. Let| SA | =1, l is readily expressed in terms of a,
a, and B. If 1< a, then A ASC = A ASB. (Construct
the triangle ASC: take an angle of size @ with vertex S,
lay off on one side | S4 | = I, construct a circle of ra-
dius a centred at 4; since a > 1, this circle will intersect
the second side of the angle at one point.) And if I > g,
two cases are then possible: A ASC = A ASB and

N\

ACS = a + P. The line segment I will be less than,
equal to, or greater than a according as 2a - P is greater
than, equal to, or less than x.
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Besides, in both cases the plane angles adjacent to the
vertex 4 must satisfy the conditions under which a tri-
hedral angie is possible.

Answer. 1f ﬁ>—g’- s 2a+P >, then

_ asin(@+B) r—s—sm,
V= 15sin ¥ 1—=2cos 2B;

if ﬁ@—té—, a<%, a—l—ﬁ>%, then

Vo 280D e s Ba T B) - cos B

12sina
if ﬁ>%, a<%, —’3‘-<a+ﬁ<-235-, then both
answers are possible.
57. % , as measured from the point K.

58. Take C; so that ABCC; isa rectangle (Fig. 2). D, is
the midpoint of AC;; 0, O, are the centres of the circles

circumscribed about the triangles AC;D and ABC,
respectively; O is the centre of the sphere circumscribed
about ABCD. Obviously, O, is the midpoint of AC, 4B
and C;C are respectively perpendicular to AD and ACy,
consequently, the planes ADC; and A BCCy are mutually
perpendicular, and 0;D;040 is a rectangle. Thus | DC; |=
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VIDCPE—|CCI2= V ® — a2, the radius of the cire
cle circumscribed about the triangle DC,4 is

|DC, | _ ViE—a"

s\ 7 2gina *
2 sin DAC,

The radius of the sghere R = | OA | can be found from
the triangle A 0;0 (this triangle is not shown in the figure):

R=7V |40, >+ | 0,0 |*=

Rl=

2 sin?a
— i 2 2 2
_2Sina Vb —a° cos“a.

59. Let K be the midpoint of the edge A B of the cube
ABCDA;B,C:D;, M the midpoint of the edge D,C;, K and
M are simultaneously the midpoints of the edges PQ and
RS of a regular tetrahedron PQRS. D,C, lies on RS. If
the edge of the tetrahedron is equal to b, then | MK | =
bV 2/2 = oV 2. Hence, b = 2a.

Project the tetrahedron on the plane ABCD (Fig. 3): Py,
Q;» Ry, S, are the respective projections of P, Q, R, S

My

Fig. 3

Since PQ makes an angle of 45° with this plane, the

length of P;Q, will be ay 2.

Let L be the point of intersection of the lines AB and
P;R;. From the similarity of the triangles P;LK and
P1R1M1 we find

| RyM, |- | PiK | a a
LK |= = =<,
I LK | | PiM, | 14+v2 2
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Hence, the edge PR of the tetrahedron (and, consequently,
other edges: PS, QR, and (S) pierces the cube.
To compute the volume of the obtained solid, it is con-

venient to consider the solid as a tetrahedron with cor-
ners cut away.

319 ~
Answer: -2 1]2/2 (16 vV 2—17).

60. Denote the lengths of these skew edges by a and b,
the distance between them by d, and the angle by o.

Using the formula from Problem 15, find the volumes of
the obtained parts:

V=12 abdsing, Vy— —1-(%- abd sin @.

20
Answer: -

61. The area of the projection of the second section on
the first plane is half the area of the first section. On the
other hand §see Problem 8), the ratio of the area of the

projection of the second section to the area of the section
itself is equal to cos a.

Answer: 2 cos a.

1 2
62. "‘E J'I'.R H.
63. If z, y, and z are the respective distances from the
centre of the ball to the passed planes, then 22 4- y? -

22 = d2, and the sum of the areas of the three circles will
be equal to

n[(R2 — 2%) + (B — ) + (R? — 2*)] = n BR® — dY).

64. Let |AC| =2z, | BD| =y (AC and BD touch
the ball). D, is the projection of D on the plane passing
through A C parallel to BD. We have

2R
cos @

| CD |=z+y= , | CD,|=2Rtang.

In the triangle CAD, the angle CAD, is equal either
to @ or 180° —a. According to this, z and y must satisfy

6—0449
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one of the two systems of equations:

2R
{”'l'y_ cos ¢ ’ @)
x2_|_y2_zxy cosax=4R?tan? P,

or
2R
{ $+y-- cosq) 1 (2)
22 4-y24-2zy cosa =4 R2 tan? ¢,
1 t: Lii
For system (1) we get: z{-y= TR Ty = Tw
cos? —
2
2R ..
for system (2): z4-y= y TY= . Taking into
cos @ -
sin ?

account the inequality (z+ )2 > 4xy, we get that system
(1) has a solution for q)>% , and system (2) for @ >

—’2"———2— Since the volume of the tetrahedron ABCD is
equal to —;—xyR sin @, we get the answer: if %g Q<<

—’2‘——%- , the volume of the tetrahedron is equal to

2 .5 a .. N a
?R tan?,lf 5 2 CP<2,two values of the
volume are possible: '§ R® tan -? and %Ra coti;_

65. Let the common perpendicular to the given edges
be divided by the cube into the line segments y, z, and
2,y + z + 2z = ¢ (zis the edge of the cube, y is adjacent

to the edge a). The faces of the cube parallel to the given
edges cut the tetrahedron in two rectangles, the sides of

the first one are equal to ;';z a, gcl’, of the second to

% a, - —l_ Z b, the smaller sides of these rectangles being
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equal to the edge of the cube, that is, % b=z, —i—a =z,
whence

Lz Lz d z= abe
V== *=g md z= ab-t-bct-ca °

66. Let O; and O, be projections of the centre of the
b?ll % on the planes XLM and KLN, P the midpoint
of ML.

The projections O; and O, on KL must coincide. It is
possible to prove that these projections get into the mid-

M
O
D
R K & L
Fig. 4

point of KL, point Q (Fig. 4). Since the dihedral angle
between the planes KLM and KLN is equal to 90°, the
radius of the desired sphere will be

V1PO, 24+10:Q 2.

If O;P is extended to intersect the line KL at point R,
then from the right triangle PLR, we find | RL | = 6a,

| RP | = 3aV 3. We then find

11 11a V'3 11a 713
IROI=Tas |010|= aﬁV ’ |R01|= 03]/ .

| PO, |=-‘£‘-3-'-/3’-—3a1/§= 2";/3,
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Consequently, the radius of the sphere is equal to

1/4a2 | 121* e I/E
3 T 12 T2 3 °

67. Using the equality of tangent lines emanating
from one point, prove that the base is a right triangle,
and the medians of the lateral faces drawn to the sides of
the base are equal. This will imply that the pyramid is

regular.

3
Answer: R 4V6 .

68. The three given angles cannot be adjacent to one
face; further, they cannot adjoin to one vertex, since in
this case all the line segments joining the midpoints of
opposite edges will be equal. It remains only the case
when three edges corresponding to right angles form an
ogen polygonal line. Let AB, BC,and CD be the mentioned
edges. Denote: |AB| =2z, |BC|=y, |CD| =z
Then the distance between the midpoints of AB and CD

2 2
will be ]/% —|-y’+2—, and between AC and BD (or AD
and BC): %]/.1:3 -+ z2. The edge AD will be the greatest:
|AD | =V T + 2=V + 3
4V 3-3
69. n --—-1—3-'—— .

70. First prove that ABCD is a rectangle and the plane
DEC is perpendicular to the plane ABCD. To this end,
through £ pass a section perpendicular to BC. This sec-
tion must intersect the base along a straight line passing
through M and intersecting the line segments BC and AD
(possibly, at their end points). Further, drawing a section
which is an isosceles trapezoid through B is only possible
if the section contains the edge AB,and | DE | = | EC |,
| AE| = | EB|. Consequently,

3

4
$14CI>|ED|=|EC), = |AC|>|EB|=|4E],
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ie. | ACI2>|CE|2+ | AE |2 and AAEC is not an
N
acute-angled triangle. But AEC cannot be obtuse, since

N
in that case DEC would also be obtuse.
Thus, |AC|=-2-| AE |:—53-|EC|.

Answer: -Ei .25_
8 14 ° '
71. Through C draw a straight line parallel to AB and
take on it a point E such that | CE | = | AB |, ABEC(C is

a parallelogram. If O is the centre of the sphere, then

N
the triangle OCE is regular, since OCE = n/3 and
| CE | =1 (it follows from the hypothesis). Hence, the
point O is equidistant from all the vertices of the parallel-
ogram ABEC. Hence, it follows that ABEC is a rectan-
gle, the projection of O on the plane ABEC is represented
by the point X which is the centre of ABEC, and | BD | =

z|ox|zz]/|00|2—.1z|30|2:1.

72. If z is the area of the sought-for section, | AB | =
a, then, taking advantage of the formula of Problem 11 for
the volume of the pyramid ABCD and its parts, we get

. a . a
prsin—- , gzsin—

2 2 2 2 2 pqg sin o
3 a 3 a 3 a !
whence
. o
B 2pq cos 5
p+q
852 sin o sin P
3a sin (a--B)

74. When cutting the ball by the plane A MN, we get
a circle inscribed in the triangle AMN. In this triangle

AN | = a_'/Tzimm = aﬁg?.’, |MN|=_22(found from
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the triangle CMN). Consequently, if L is the point of
contact of the desired ball and 4 M, then

| AL | = IANI—!—IAJ;Jl—IMNl 2(% lf':’»—%—)a.
The ball inscribed in ABCD has the radius r= %- l/%_ a

and touches the plane ACD at point M.
Thus, if z is the radius of the desired ball, then

z |AL| _5—V3

T 1AM 4 ¢
Hence, z= > 1/64-;3 V2 a.
9V'3
75- _"8-"'_'0
76. V3.
77. a V' 2

.

1
78. arctan ———
2V'3

79. Notation: O is the centre of the sphere; 0,, 0,, O,
the centres of the given circles, O, the centre of the sought-
for circle. Obviuosly, the triangle 0,0,0; is regular.
Find its sides (M is the point of contact of the circles
with centres 0, and 0,). | O\M | = | O, M | = 1,| OM |=

N PN _
2. Hence, MO0, = MO0, = 30°, | 00, | = |00, | =V 3,
| 0,051 = V 3. 00, is perpendicular to the plane 0,0,0,
and passes through the centre of the triangle 0,0,0s,
the distances from 0,, 0,, and O3 to 00, are equal to 1.
Let K be the point of contact of the circles O, and O,
L the foot of tﬁe perpendicular dropped from O, on 00,.
KN is perpendicular to LO,, |OL| =0, K| =1,
| 00, | = V 3.From the similarity of the right triangles

) —

O0,KN and O0,L find | ON | = V '§ Thus, the required

radius | O,)K | = | LN | mi-—]/%.
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80. (a) Since the opposite edges in a regular tetrahed-
ron are perpendicular, the lines C,E and B,F must also
be perpendicular (Fig. 5).

If K is the midpoint of C,C, then, since the lines B, K
and B,A, are perpendicular to the line C £, the line

D , ,

Fig. 5

B,F must lie in the plane passing through B, X and B,4,,
hence it follows that 4, F isparallel to B, X, and, therefore
| DF | = a (this is the answer to this item).

(b) The distance between the midpoints of MN and PQ
is equal to the distance between the lines B,F and C,E.
It can be found by equating different expressions for the
volume of the tetrahedron FB,C,E:
1

1
§S3131E2a=-€ I FB]_ I'I ClEI'x.

4a
3V'5 " )
. (o) o ) 22V 2,

Hence, z=

82, Let | AB| = a, then| AB,| = | AC, | = 2.6a.
On the lines AB and AC, take points K and L such that
| AK|=|AL|=|AB,| =| AC,;| = 2.6a. An iso-

sceles trapezoid KLC,B, is inscribed in the circle of the
base of the cone. All the sides of this trapezoid are readily
computed and, hence, the radius of the circle circums-

cribed about it isalso easily found, it equals ;—glfﬁa.

It is now possible to find the volume of the cone and
prism.
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15,379n
V3’

83. Note that the line segment MXN is bisected by its
point of intersection with the line PQ. Project this line
segment on the plane ABCD. If N, is the projection of N,
K, the midpoint of 4D, Q, the midpoint of DC (K, and Q,
are the respective projections of X and Q), then N, M is
perpendicular to AQ; and is bisected by the point of in-

Answer:

N N\ -
tersection. Thus, N;AD = 20Q,AD. Hence we find
| NyK;| and then | N;M |.

Answer: —g~ }/ 14

84. Through the edge A A, pass a plane perpendicular
to the plane BCC\B, (Fig. 6). M and N are the points of

Fig. 6 Fig, 7

intersection of this plane with C;B, and CB. Take on MN
a point K such that | NK | = | MJ{’ |. By the hypothesis,
AA,MN is a square, hence, AK is perpendicular to 4 M,
and1 it follows that AK is perpendicular to the plane
AC,B;, that is, AK is a straight line along which the

lanes passing through the vertex 4 intersect. Analogous-

, determine the point L for the vertex 4;. The straight
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lines AK and A,L intersect at the point S. Thus, our
polyhedron represents a quadrangular pyramid SKPLQ
with vertex S whose base is found in the plane BB,(C,C.
Further, B, N is the projection of AB,. Hence it follows
that the plane Ipassing throu%rh A perpendicular to 4B,
intersects the plane BB,C,C along a straight line perpen-
dicular to B,N. It follows from the hypothesis that the
triangle B;NC, is regular. Hence, the quadrilateral
PLQK, whichisthe base of the pyramid SPLQK, is a rhom-
bus formed from two regular triangles withside | KL |=

3a. _
3
Answer: -?%/i .

85. The sought-for angle makes the angle between the
element OA and the axis of the second cone equal to 5t/2.
Denote by P and Q the centres of the bases of the given
cones, by S the point at which the planes of the bases of
the cones intersect the perpendicular erected to the plane
OAB at the point O (Fig. 7). In the pyramid SOAB:
| OA | = | OB |, SO is perpendicular to the plane OA4B,
OP and OQ are respectively perpendicular to SB and SA4,
N AN S N
POB = Q0A = ¢, POQ = B. Find POA. Let | 04 | =
|OB| =1, | AB| = a. Then

0P| =10Q |=lcosg, |S4|=|SB|=po
5P |=15Q| =1 0P | cot p=1 522,

| PQ|=| AB | :gg: =gq cos? @,

On the other hand,
|P()|=2]0P|sin%==21(:osq)sin%.

Hence

a cos @=21sin b ) (1)

2
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Now, find | P4 |:
AN
| PA|2=| PB|*4-| AB |2—2| PB|-| AB | cos PBA
a sin @

=2gin? ¢4-a2—2lsin @-a 5]

=]2sin? @-}-a® cos? ¢.

N
But if y = POA, then from the triangle POA we have:
| PA |2 = 12 cos? @ 4 12 — 22 cos @ cos ¥.

Equating the two expressions for | PA |2 and taking
into consideration (1), find

B

. a P
2sin 5

cos@ °

( 2 sin? E )
)14 2
Answer: —2——arccos cosp——— 1|,

cos @
86. (5 V' 6+ V' 22) R.
87. If the plane cuts the edges AD and CD, then the
sectionrepresents a triangle and theradius of theinscribed

COS y==C08 p—

a
i i t = ——
circle will change from 0 to V 22008 a1V Gcos? a Ty’
Let now the plane cut the edges AB and BC at points
P and N, SA and SC at points Q and R, SD™at point X,
and the extensions of AD and CD at points L and M
(Fig. 8). Since the lines PQ and NR are parallel and touch
the circle inscribed in our section, PN is the diameter
of this circle. Setting | PN | = 2r, we have

| ML | =2a V 2—2r,

__“Vé'—" o ey 11
| KL | = 2008 @ V4cos?at1,

(e V'2—r)?

S =
MKL 2cosa



Answers, Hints, Solutions 91

Thus,

i aVa2—r
2cosa+V hcosPat1

whence

e aV2
14-2cosatVhcosPat+1

Answer:

O<r< = a —_——"
V2(2cosatVicostat1)

o aV2
14+2cosa+tV &cosPat1

88. Let us pass a section by the plane passing through
the edge A B and the midpoint of CD, point L; K is the

Fig. 8

point of intersection of the plane P and A L. The altitude
dropped from A onto BL intersects BK at N and BL at Q
(Fig. 9). It is easy to prove that the centre of the sphere
lies on the line AQ. Here, the centre of the sphere can lie
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both on the line segnent AN (point O) and on the exten-
sion of AQ (point 0y).

The radius of the 1ﬁrst sphere is equal to the radius of
the circle touching AB and BK and having the centre on

Fig. 9

AhJ_V . We denote it by z; x can be found from the relation-
ship

1
SBANZE'U AB |+ | BN |)z,

|BN|_—_.%|BK]:%V2|AB|2+2|BL|‘-’—| AL |*

hence, x==————— . The radius of the sccond sphere

is found in the same way.
V2a

Ansuwer: —
54V 11
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89. Let z denote an edge of the tetrahedron, | MN | =
—]%. If the edge, whose midpoint is M, makes an angle «

with the given plane, then the opposite edge makes an an-
s

57—
plane represents an isosceles trapezoid with bases z cos &

gle of o.. The projection of the tetrahedron on this

X
and r sin & and the distance between the bases equal to ]_/__é

2

Thus, S = 2-;:7-5 (cos a + sin a). Besides, by the hypothe-
sis, the angle at the greater base is 60°, whence | cos o —

sina | = V%

Answer: 3SV 2.
90. Let the edge of the cube be equal to 1. Denote by O

N
the centre of the face ABCD. From the fact that NM (¢ =

PR
60° and NOC = 90° it follows that O lies between M and
C.Setting| OM | = z,| NB | = y,we have| MN | = 2z,

| NO|= zV'3,| MB | = ]//_;_ -+ z2. Applying the theo-
rem of cosines to the triangles MNB and ONB, we get

%+x“”=4x2+y2—2xy V2,

1 2
3t = J-y2e——=—y.
2 + 3

V

4,2

Ve ' Vs

) Answer: | AM 1| MCl =2 —V3,| BN |:| NDy |=
" 91. The plane passing through 44, parallel to B,D is

parallel to the plane DD,B,B. Exactly in the same way,

the Ylane passing through DD, parallel to 4,C will be
parallel to the plane AA4,C,C.

Hence we find: z=
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On the other hand, the planes passing through the
edges B and B, (, will be parallel to the respective planes
AB,C\D and A,BCD,. This taken into account, construct
the section of our polyhedra by the plane parallel to the
bases and %assing through the midpoints of the lateral
edges and the plane passing through the midpointsof the

Fig. 10

parallell sides of the bases of the prism (see Fig. 10). In
the accompanying figures, L and K are the midpoints
of opposite edges EF and HG of the triangular pyramid
EFGH, the edges EF and HG are mutually perpendicular.
Setting | BC| =2z, | AD| = nx, and denoting the
altitude of the trapezoid ABCD by y and the altitude of
the prism by z, we find

— .y =Y
{3 n __5n4-3
IGHI=5n+3

n41 %



Auswers, Hints, Solutions 95

The volume of the prism is equal to -(-'-?'-_}-—%)xﬁ . The

volume of the triangular pyramid equals %I EF|-|GH|X

_ (Bnt3)
I KL | == m zYz.
(5n4-3)3
12(n4-1)® °
92. Let the altitude of the prism be equal to z. On the
extension of the edge BB take a point X such that

| BK | = -%x, | B1K | = %x Since KN is parallel to BM

and | KN{ = 2| BM |, the projection of KN on CN is
twice the length of the projection of BM on CN, that is,

a
it isequal to 75- In the triangle CNK, we have| CN | =

Answer.

Vot Zanki=vara i cki=} @ +2a

Depending on whether the angle C;NK is acute or ob-
tuse, we shall have two equations

2
@+ 2= e+ ) + @+ 4a

or

@t 2= (a4 2 ) 4 @ de)

22 a
+2 l/az-l-T' %

or a.

a
Answer: =
2V'5

93. Denote two other points of tangency by 4; and By
and the radii of the balls by R and r. In the trapezoid

AA;BB; find thebases:|44;| = 2 R cos E, | BB; | =



96 Problems in Solid Geometry
—;—‘ and the lateral sides | 4B, | = |4,B | = 2V Rr,
and then determine the diagonals | AB | = | 4; B; | =
2‘/ Rr(i -+ cos? -g) If the ball passing through A4

and A; cuts AB at K, then | 4;B|2= | BK |- |BA |,
whence

2r cos

2VRr | AB|
= —a o
'l/ {4 cos? _;i 14-cos? 5

o
2
o
2

| BK | =

14

| AB | cos®
| AK | =

14-cos?

Other parts into which the line segment 4B is divided are
found in a similar way.

Answer: The line segment AB is divided in the ratio

2 % L aina %L a2 %
cos® - : sin? - : cos® -,

94. It is possible to prove that the axis of the cylinder
must pass through the midpoint of the edge BD and belong
to the plane BDL, where Lp is the midpoint of AC. Let the
axis of the cylinder make an acute angle @ with BD. Pro-
jecting the pyramid on a plane perpendicular to the axis
of the cylinger, we get a quadrilateral 4,B8,C;D; in which
| 4;¢, | = | AC | = 12. The diagonals 4,C; and B{D, are
mutually perpendicular, 4,C; is bisected by the point F
of intersection of the diagonals, and DB, is divided by F

into the line segments 613 cos @ and 1073 sina —
673 cosa. Fromthe condition|4,F || FC; | = |B{F | X

| FD; | we get for a the equation
sin2 @ — 5s8in e cos o 4 4 cos?a = 0,

whence we find tan a; = 1, tan @y, = 4. But | ByDy | =
10} 3 sin & and is equal to the diameter of the base of
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the cylinder. Two values are _obtained for the radiue of
the base of the cylinder: 5_2@ and 2013

V17

95. On the edge A S take a point K such that | AKX | =

a. Then the points B, D, and K belong to the section of
the cone by a plane parallel to the base of the cone
(| AB| =] AD| = | AK |). From the fact that C lies in
the plane of the base it follows that the plane BD K bisects
the altitude of the cone. Thus, the surface area of our
cone is four times the surface area of the cone the radius
of the base of which is equal to the radius of the circle
circumscribed about the triangle BD K with generatrix

equal to a.
4 V2 a2 (V b2+ 24 —a)
VP 1222 V3V 0P T 202 —4a

96. Let the radius of the base of the cone be equal to R,
altitude to h, the edge of the cube to a. The section of the
cone by the plane parallel to the base and passing through
oh — aV 2,

2h
in which a rectangle (the section of the cube) with sides a
and )} 2 is inscribed, that is,

(2h —a ‘/2)2
3a2= R% 73 .

Answer;

the centre of the cubeis a circle of radius R

(1)

The section of the cone parallel to the base of the cone
and passing through the edge of the cube opposite to the

edge lying in the base isa circle of radius R -’Lzhi@.
On the other hand, the diameter of this circle is equal to a,

that is,

a=2R _____h—]c; V2 . )

From Relationships (1), (2) we get
h=V2(5jV3)a, R=g._]/_§—_1a_
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x(53—7V3) V2
48 :

Answer:
3

5 L ]
VAN
98. From the equality A CB = A DB aund perpendicular-
ity of AB and DC we can obtain that the points ¢ and D
are symmetric with respect to the plane passing through
AB perpendicular to CD.

97.

a
Answer: —3—- .

99, Let K be the midpoint of AB, P the foot of the
perpendicular dropped from K on ¢S. On A B take points
M and N such that PMN is a regular triangle (Fig. 11).

Fig. 11 Fig. 12

The pyramid SPM N can be completed to obtain a regu-
lar prism PMNSM Ny so that PMN and SM{N; will be
its bases and PS, MN;, NN, its lateral edges. The prism
A1B1CA 4B,S will be homothetic to the prism PMNSM N,
with centre in S and ratio of similitude | ¢S |/| PS |. It
is easily seen that the sought-for part of the volume
of the pyramid SABC contained inside the prism
A1B1CA 4B,S is equal to the ratio | MN|/ |AB |. Setting

AB = aV'3, | CS| = 2a, we find:

13 3 5
|SK|=V2 a, |CK|=-§-a, |PS|==—4-a,
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| PK | = 3'4/3 s,
MN = PE| 224 N ag =Y3
Vrg 2 ] i 2 .

o

Answer: }23

100. Let the plane passing through B,C, intersect
AB and DC at points K and L (Fig. 12). By the hypothe-
sis, the polyhedra AKLDA,B,C,D, and KBCLB{C; have
equal volumes. Apply to them Simpson’s formula (Prob-
lem 15), setting | AK | = | DL | = a. Since the alti-

tudes of these polyhedra are equal, we get the following
equation for a:

(a+1) (+1)_ . (7—a) (74+1)
Tatd+b—— 2 g—=T—a T +4-F= 2,

whence a—= —19-

5 -
Denote the altitude of the pyramid by 4. Introduce
a coordinate system taking its origin at the centre of A BCD
and with the z- and y-axes respectively parallel to AB
and BC. The points 4, C, and D, will then have the coor-

. 7 7 7 7 1 1
dinates (=35 =3,0)5 (5:90).(~7, 3:%)
respectively. It is not difficult to find the equation of
the plane ACD,: hx — hy ++ z = (0. The plane KLC,B,
will have the equation 10hz — 8z -+ 3k = 0. The normal
vector to the former plane is n (b, —&, 1), to the latter
m (10k, 0, —8). The condition of their perpendicularity

yields 10n2— 8 = 0, |h = g_]g_é The volume of the

pyramid is 35 15/5 ;

101. Two cases are possible:
1. The lateral sides of the trapezoid are the projections
of the edges AB and B,(,. It is possible to prove that in
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this case the centre of the sphere is found at the point C.
The volume of the pyramid will be equal to 3a%/8.

2. The lateral sides of the trapezoid are represented
by the projections of the edges AB and A4C;. In this case
the centre of the sphere is projected into the centre of
the circle circumscribed about the trapezoid ABC{A{, the
altitude of the trapezoid is equal to 2}/ 5/3, the volume

of the prism is equal to a®} 5/4.
3ad a® V5
G S
n
102. ¢ (a%4- 2b2).
103. Project the given polyhedra on the plane ABC

(Fig. 13). The projections of the points 4,, By, and C; are
not shown in the figure since they have coincided with the

Answer:

p
8
IR\
\\
/ RN
/ \\
/ s .
A / ”j f c/.__..- M 17/ ““‘ M
/ -
//
N
(a) M (b)
Fig. 13

points A4, B, and C; S; and D, are the respective projec-
tions of the points S and D. If on the line segment PS;
a point K is taken such that | PK | = | ND 4|, then the
point K is the projection of the point K, at which the
edge PS intersects the plane A,B,C;. Thus, the desired
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ratio is equal to

|KB| _ | ND,|—| PB|
| BP | | PB|
U SHN =1 DyS; D= PS, | =1 BS, |)
- | PSy | —| BS, |
— |lel_|D181| (1)
| S:M | —| BS; |~

Consequently, our problem has reduced to finding the
line segments | S,M |, | BS;|, | D;S;|, where S, is a
point from which the sides of the triangle BD,M are seen
at equal angles. BD,M is a right triangle with legs
| DM | = 2a, | BD,| = aV 3.

Notation: | S M| ==z, | $Bl =1y, | 31D1°| = z.

Rotate the triangle D, S, M through an angle of 60° about
the point D, (Fig. 13, b), D,S,S, is a regular triangle

N
withsidez; the points B, Sy, S5, M; are collinear, BD,M,=
150°. From the triangle BD,M, find z + y -+ z = a]/gl3.
The altitude of the triangle BD,M, droppgd on the side

Z

- a
BM, is equal t(;) a]/f'_g, whence z = ]7“1——3. y +5§ =
342 _ba . __ da
2__ 2% —=— Now it is easy to find that y =——,
Vg“ 13 13 y V13
6
z = ]/'cj[_g' Substituting the found values into (1), we

get that the required ratio is equal to 3 (measured from
the vertex B).

104. Any tangent plane separates space into two parts;
here two cases are possible: either all the three spheres
are located in one half-plane or two in one half-plane and
one in the other. It is obvious that if a certain plane
touches the spheres, theun the plane symmetric to it with
respect to the plane passing through the centres of the
spheres is also tangent to these spheres. Let us show
that there is no plane touching the given spheres so that
the spheres with radii of 3 and 4 are found on one side of
it, while the sphere of radius 6 on the other.

Let the centres of the spheres with radii of 3, 4, and 6
be at the points 4, B, and C. The plane touching the given
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spheres in the above indicated manner divides the sides
AC and BC in the ratios 1:2 and 2: 3, respectively,
sthat is, it will pass through points K and L on AC and BC
such that | CK| = 22/3, | CL )| = 33/5. The distance
from C to KL iseasily found, it is equal to 331/3/91 < 6.
Hence it follows that through KL it is impossible to pass
a plane touching the sphere with radius of6 aund centre
at C. We can show that all other tangent planes exist,
they will be six all in all.

105. The solution of this problem is based on the fact
that the extension of an incident beam is symmetric to the
reflected beam with respect tothe face {rom which the
beam is reflected. Introduce a coordinate system in a nat-
ural way, taking its origin at the point N, and the edges
NK, NL, and NM as the z-, y-, and z-axes; denote by Q’
and R’ the successive points of intersection of the straight
line SP with the coordinate planes different from LN M.
We have | PQ|=1|PQ" |, |QR|=|CQ'R|.

The point P has the coordinates (0, 1,13). Denote
by a, B, o the angles made by the ray SP with the coor-
dinate axes. It follows from the hypothesis that p = n/4,
then cos « is found from the equality 2 cos? o - cos? p =
1, cos o = 1/2 (o is an acute angle). Consequently, the

vector a (1/2, V'2/2, 1/2) is parallel to the line SP. If
A (z, y, z) is an arbitrary point on this line, then

—_— e

0A = 0P + ta,
or in coordinate form,

t 2 =, ¢
==, Yy=1+-—5—1, Z—V3+—2'.

The coordinates y and z vanish for ¢,=— ) 2 (this

will ke point Q') and for t,—= —2 V'3 (point R’).J‘Llus,

155

9 5 _ e
Q’ (_lg_z' ’ 0’ V‘é—'Kzg') ’ R (_']/3’ 1—]/6’ O)v
| PO 1=V2, |QR |=2V3-V2.
Answer: 2 V3.
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106. Denote by K the point of tangency of the sphere
with the extension of €D, and by M and L the points of
tangency with the edges AD and BD, N is the midpoint of
BC (Fig. 14).Since| CD | = | DB| = | DA |, DN is per-
pendicular to the plane ABC, | DK | = |DM| = |DL|,
KL is parallel to DN, ML is parallel to AB, hence, the

a
plane KLM is perpendicular to the plane ABC, KLM =
90°. If O is the centre of the sphere, then the line DO is

Oz

Fig. 15

per;iendicular to the plane KLM, that is, DO is parallel

to the plane 4 BC, consequently, | DN | = 1 (to the radi-

us of the sphere). In addition, DO passes through the

centre of the circle circumscribed about the triangle KL M,

that is, through the midpoint of XM. Hence it follows
N 1 PN

that ODM = 5 KDM. Further, |DA|=\|DC)| =

VICN? - DN 2= V3,]CA|=|CB| cos 30° =

. .. AN N
V6, i.e. A CDA is right-angled, ¢DA = 90°, ODM =
45°, | DM | = | OM | = 1. The required segment of thg
tangent is cqual to | AM | =|AD| —|DM | = V'3
— 1.
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107. Let 0,, 04, O4 be the [iloints where the balls are
tangent to the plane P: 0, for the ball of radius r, and 0,
and Og for the balls of radius R. O is the vertex of the
cone (see Fig. 15) and ¢ the angle between the genera-
trix of the cone and the plane P. It is possible to show that

1010|=rcot—‘gl, |002|=|003|=Rcot—‘g—,
|0102|=| 0,05 l=2 VR_T; 10203|=2R-

Since | 0,0, | = | 0,05 |, ouly the angle 0,0,0, can be
equal to 150°, hence, R/r = 4sin? 75° = 2 } V3.
Further, if L is the midpoint of 0,04, then

|OL|=V | 00; 2 =| 0L 2=R 'l/cot’I -22?—-—1,

| 0,L | =1V] 0,05 |°—] OsL |*=V 4Rr—R:.

The point O is found on the line 0,Z, and it can lie
either on the line segment O,L itself, or on its extension
beyond the points L or 0, (O’ and 0" in the figure). Respec-
tively, we get the following three relatiouships:

10,21 =100,1+10L),10,L|=10,0"1—]0L|,
|OL1=10"L|— |00,

Making the substitutions R== (2—|— ]/'5) r, cot % =z

in each of these relationships, we shall come to a contradic-

tion in the first two (zx = 1 orz = — 2¥/8/3), in the third
case we find z = 2V 3/3.

A : _1

nswer: Cos Q==

108. Denote by X and L the midpoints of the edges AD

and BC, N and P are the pointsof intersection of the passed
plane and the lines AB and AC, respectively (Fig. 16).
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Find the ratios | PA |/| PC | and | PK|/| PM |. Draw
KQ and AR parallel to DC, Q is the midpoint of AC.

|PA| __|AR| _|DM| 2
A - == = == —
ARV=1DM, e =TaeT = Tarc =3
|PK| _1KQ| __IDC| _5
| PMT—1MC| 21 MC] 6"
Then find
|AN| _2 |PN| &
NBI =3 JPL| "3

Vepakn | PA|-|AK|-|AN| 2

Vascp |AC|-|AD|-|4B| 5’

that is, Vpapny = 2. Since the altitude dropped from 4
on PNK is equal to 1, Spyg = 6,

Spmr _ | PK|-|PN]| 3

Senx | PM[-|PL] 2 SrML=9

Thus, theareaof the section will be Spprr, — Spyx = 3.
109. Knowing the radius of the baﬁ inscribed in the
regular triangular pyramid and the altitude of the pyra-

/)

Fig. 16

mid, it is not difficult to find the side of the base. It is
equal to 12, | MK | = | KN | (by the hypothesis, the
tangents to the ball from the points M and N are equal
in length).
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Let | BM | =z, | BN | = y. Finding | MN| by the
theorem of cosines from the triangle BMN, and | MK |
and | NK | from the respective triangles BMK and BNK,
we get the system of equations

{ 22tyP—ay=49, _  2*+yP—ay=49,
22 —12x=y2—12y (z—y) (x+y—12)=0.

This system has a solution: z, = y, = 7. In this case the
distance from X to MN is equal to 4Y'3 _ Z_!g_?' = lgf’.

<< 2, that is, the plane passing through MN and
touching the ball actually intersects the extension of SK
beyond the point K,

12 12
T | SD | =6 %

Another solution of this system satisfies the condition
z + y = 12. From the first equation we get (z -+ y)2 —
3zy = 49, zy = 95/3. Hence it follows that

Smrn=|SsMk+SBNk—SBMN |
V3| 49V3
4

Consequently, the altitude dropped from K on MN is equal
to %]/3 > 2, that'is, in this case the planc passing

through MN and touchingthe ball doesnot satisfythe con-
ditions of the problem.

12

Answer: 6 3"

110. From the fact that the edges of the pyramid ABCD
touch the ball it follows that the sums of opposite edges
of the pyramid are equal. Let us complete the pyramid
ABCD to get a parallelepiped by drawing through each
edge of the pyramid a plane parallel to the opposite edge.
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The edges of the pyramid will be diagonals of the faces of
the parallelepiped (Fig. 17), and the edges of the paral-
lelepiped are equal to the distances between the midpoints
of the opposite edges of the pyramid. Let | AD | = a,
| BC | = b, then any two oppositc edges of the pyramid
will be equal to @ and b. Let us prove this. Let | AB | =
z, |DC| =y. Then z + y = a + b, 2% 4 1® = a® + P

A

Fig. 17

(the last equality follows from the fact that all the faces

of the parallelepiped are rhombi with equal sides).
Hence it follows that 2 = a, y = borz = b, y = a.

Hence, in the triangle ABC at least two sides are equal

. D

in length. But ABC = 100°, consequently, | AB | = z =

|BC|=b, |AC|=a, |DB| =0, | DC| = a.
From the triangle ABC we find a = 2b sin 50°,

1 1 a2V3
VABCD=:OTSADC’¢B=§' Z hg
1 1 b2sin 100°

hA - a? ]/'-6’ _ a (o)

whence hn 27 Sin 100° V'3 tan 50°.
111. The equality of the products of the lengths of the
edges of each face means that the opposite edges of the
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pyramid are equal in length. Complete the pyramid SABC
in a usual way to get a parallelepiped by passing through
each edge a plane parallel to the opposite edge. Since tﬁe
opposite edges of the pyramid SABC are equal in length,

Fig. 18

the obtained parallelepiped will be rectangular. Denote
the edges of this parallelepiped by a, b, and ¢, as is shown
in Fig. 18.

In the triangle BCD draw the altitude DL. From the
triangle BCD find

be
VeEte

| AL| =V | DL P=

| DL | =

V a2t b2c2 1 c%a?
V- ’

Sapc= % V a2 b3cE f c%a?,

The volume of the pyramid SABC is one third the volume
of the parallelepiped. the altitude on the face ABC is
given; thus we get the equation

V a??+b2c®+ c2a?- 15052 =abc. (1)

By the theorem of cosines, for the triangle ABC we get

I e RV = VA 2
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And, finally, the last condition of the problem yields
¢ — 2¢% — 2b? = 30. 3)
Solving System (1)-(3), we find a2 = 34, b2 = 2,

¢ = 102.
3%V6
3 -

112. Denote by M and N the points at which the
tangents drawn from 4 and B touch the ball, a7, and N,
are projections of the points M and N on the plane ABC
(Fig. 19, a; the figure represents one of the two equivalent

Answer:

M
/ 0
#, 8

(4)

Fig. 19

cases of arrangement of the tangents when these tangents
are skew lines; in two other cases these tangents lie in one
and the same plane). The following is readily found:
|AM | =|CN| =1, | MM, | = | NN, | = lsin «a,
| AM;| =|CNy| =1lcosa. Find | BM,| and | BN, |
(Fig. 19, b; O the centre of the ball, OL || BM,)

| BN, | =| BM, |=| OL | =V r*— (I sin a—r)?

=V 2rlsin a— (2 sin2 q.

When rotated about the point B through an angle ¢ =
PN
ABC, the point A goesin C, M, in N,, consequently, the
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triangles BM,N, and BAC are similar,
| MN | = IMN, |=|BM, | —%~

—
Triangle M,BN, is obtained from the triangle ABC by

V 2risin o —i2 sinZa.

. N
rotating it about B through an angle y = AB M, followed
by a homothetic transformation. Consequently, the angle
between M,N, and AC is equal to v, and since M N, is
parallel to M N, the angle between MN and AC is also
equal to Yh
From the triangle BM;4 we find

2rl sin o.— {2 sin%a. - 12— 2 cos2 a

cos y=
v 20V 2rlsina—I[%sin?a
_ rsina
V 2rl sina—1%sin?a °
Then
2rl sin oo — (12-4-r?) sin2
sin y= ]/r ina—(l*~-r® si oc.

V 2risina— *sin? o

Using the obtained values for | MN |, | MM, |, and
sin y, find the volume of the pyramid ACMA:

1 .
Vacun=-5 | AC| - |MN | - |MM, |siny

__2a*sinoa

o 3
We now take a point P such that M, N,CP is a paral-
lelogram, hence, MNCP is also a parallelogram. Let § be

V 2rl sina— (12} r?) sin? . (1)

P
an angle between AM and CN, then p = A MP. But the
triangle ABM, is obtained from the triangle CBN; by
rotating the latter about B clockwise through an angle

P
= ABC. Hence it follows that the angle between 4 M,
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: S
and CN, is equal to ¢, and, hence, A M,P is also equal
to ¢, that is, the triangles A M;P and AB(C are similar
to each other. From this similarity we find | AP | =

N
2acos a. The angle B is congruent to theangle AMP, AMP

is an isosceles triangle in which | AM | = | MP | = I,
| AP | = 2a cos oe. Consequently,
oin B aoma
2___pn2 2
sin  =2sin —g-_cos %: 2a cos V.llz a cos"a

Express the volume of the pyramid ACMN in a diffe-
rent way:

1 .
Vacun =5 | AM |- |CN | zsinf

1
== 5~ 4z co8 oV i2—a?cos? a,

where z is the desired distance. Comparing this formula
with the equality (1), we get

_ 2atan a V 2risino— (124 r?) sinfa
V 12—a®cos? a |

113. Let | EA | = z, the area of the tri_angle EMA will

be the greatest if | EH | = | HA | = —2?, and will equal

x 1 ‘% The distance from B lo the plane EAH

2 2
is not greater than | AB | = 1. Since Sprg = SEBCH

1 1 z —
1= VaBcen=VABEH < LF3 Y 2— 22

1 1 i b
=15 V22— < 57 2+ -2 =13
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Thus, z = 1, and the edge 4B is perpendicular to the
plane EAN; ABCE is a square 1 cm on a side.

Consider two triangular prismatic surfaces: the first is
formed by the planes ABCE, AHE, and BCH, the second
by the planes ABCE, ECH, and ABH. Obviously, the
radius of the greatest ball contained in the pyramid
ABCEH is equal to the radius of the smallest of the balls
inscribed in these prisms. And the radius of the ball in-
scribed in each of these prisms is equal to the radius of
the circle inscribed in the perpendicular section. The per-
pendicular section of the first prism represents a right
triangle with legs1 and 4/2, theradius of the circle inscribed

in this triangle is equal to §_—V§ The perpendicu~

4
lar section of the second prism is a triangle AHE, the
radius of the circle inscribed in it isequal to K2_2_—_1 >

3 —V5

4 -
3—yV'5
&

114. From the fact that the straightline perpendicular
to the edges A C and BS passes through the midpoint of BS
it follows that the faces ACB and ACS are equivalent.

{ Let SASB = SBSC.' = 0, the.n SACB = SACS = 20.
Denote by A4,, By, C;, S, the projections of M on the res-
pective faces BCS, ACS, ABS, ABC; hu, hg, hg, hs
are the altitudes dropped on these faces, V the volume of
the pyramid. Then we shall have

Answer:

3V
|MA1 |+2|MBI |‘+‘|MC1 |+2 | MSl|=7-

But, bythe hypothesis, | MB | 4 | MS | = | M4, |+
| MB, | + | MC, | + | MS, |. From these two equalities
we have:

3V
| MB |+ | MB,l+ | MS |+ | M8, | =—-.

Q
But

1 1

V=T hS'20=T hB'20=§(hB+ hs).
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Consequently, | MB | + | MB, | + | MS | + | MS, | =
hg + hs. On the other hand, | MB| + | MB, | >
hg,| MS | + | MS, | = hs. Hence, | MB | + | MB, | =
hg, | MS| + | MS, | = hg, and the altitudes dropped
from B and S intersect at the point M, and the edges AC
and BS are mutually perpendicular.

Fram the conditions of the problem it also follows that
the common perpendicular to AC and BS also bisects AC.
Let F be the midpoint of A C, and E the midpoint of BS.
Setting | FE | = z, we get

1 1 3
0=Sass=— |SB| - 14E 1=+ )/ 21,

20=S4cs -Q ]/x2 +% .

Ve ST T3
We shall get the equation TV z +T_V z —|—7,

whence x=—3-, Considering the isosceles triangle BFS
in which |BS|=1, |BF|=|FS|, the altitude |FE |=

5 M the point of intersection of altitudes, we find

Bmi=1sm) =L

115. Since the lateral edges of the quadrangular J)yra-
mid are equal to one another, its vertex is projected into
the point O which is the centre of the rectangle ABCD. On
the other hand, from the equality of the edges of the
triangular pyramid it follows that all the vertices of its
base lie on a circle centred at O.

Let the circle on which the vertices of the base of the
triangular pyramid lie intersect the sides of the rectangle
ABCD at points designated in Fig. 20, a. From the faci
that the lateral faces of the triangular pyramid are equiv-
alent isosceles triangles it follows that the angles af
the vertices of these triangles are either equal or thel
sum is equal to 180°. Hence, the base is an isoscele:
triangle. (Prove that it cannot be regular.) Further, twc
vertices of this triangle cannot lie on smaller sides o
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the rectangle ABCD. If the base will be represented by
. N
the triangle LNS, then | SL| = | LN |, SLN = 90°,

and, hence, it will follow that ABCD is a square. But
if the triangle LNR will turn out to be the base, then

8 M

>~

AS
Fig. 20

from the condition a << 60° it will follow that | BN| >
| NR |. Hence, the sides RL and LN will be equal which
is gossible when the points K and L coincide with the
midpoint of 4B,

Reasoning in a similar way, we shall come to another
possibility: the vertices of the base of the triangular pyra-
mid are situated at the points R, N, and P, P being the
midpoint of CD.

Consider the first case (Fig. 20, 5). Let | LO| =

IONI=|OR|=r.Then|NR|=ICD|=2rtan-‘§.

. N 7N ]
But, since LEN + NER = 180°, the triangles LNE and
NER, being, brought together (as in Fig. 20, c), form
a right triangle LNR. Hence,

|LN |=V 4|LE*—|NR [?

= 1/ 4h? +4rt—4r? tan? -ozi- .
On the other hand,

| LN |’=(r—|—r ]/‘1—tan2 %)2+r’tan2%—,
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Thus,
2h2

2tan2%—i—‘/i—tan2 %—1

Considering the triangle NRP in a similar way, we get:
rz < 00

r2

3 @
8h3 tan 7

3 (2tan2 %'—I-]/i—tanz %—1) '
116. Extend the edge SA beyond the point S, and on

Answer:

the extension take a point 4, such that | S4, | = | S4 |.
In SA,BC the_dihedral angles at the edges S4; and SC
will be equal, and, since | S4A,| = | SC|, | A;B| =

| CB | = b. The triangle ABA, is a right triangle with
legs a and b. Consequently, the hypotenuse | 44; | =

2148 | = V a® F b2
Answer: % ]/a3+b2.
117. Consider the tetrahedron with edge 24. The sur-
face of the sphere touching all its edges is broken by the
surface of the tetrahedron into four equal segments and

four congruent curvilinear triangles each of which is
congruent to the sought-for triangle. The radius of the

alf2
2

equaltoa (Lz__ 1 V—%) , consequently, the area

sphere is equal to , the altitude of each segment is

2 2
of the sought-for curvilinear triangle is equal to

o () sz (B3 5]

na?

e (2 V'3—3).

118. Consider the cube with edge equal to 2}/ 2. The
sphere with centre at the centre of the cube touching its



116 Problems in Solid Geometry

edges has the radius 2. The surface of the sphere is broken
by the surface of the cube into six spherical segments and
eight curvilinear triangles equal to the smallest of the
sought-for triangles. _

Answer: (3 2—4) and 5 (9 2—4).

5—1

2 .

120. Pass a section through the axis of the cone. Con-
sider the trapezoid ABCD thus obtained, where A and B
are the points of tangency with the surface of one ball,
C and D of the other. It is possible to prove that if F is
the point of contact of the balls, then F is the centre of
the circle inscribed in ABCD.

In further problems, when determining the volumes
of solids generated by revolving appropriate segments,
take advantage of the formula obtained in Problem 18.

121, —% SR.

122, Take advantage of the Leibniz formula (see (1),
Problem 153) *

31 MG |3=| MA|*+| MB |*+]| MC |2
— A (14B 141 BC I | A1),

119. arccos

where G is the centre of gravity of the triangle ABC.

If now ABC is the given right triangle, 4;B;C; the
given regular triangle, G their common centre of gravity,
then

| A4 1P| 4B [P | AC 1P=3 | 46 [ o b2
=a’—|—-%—b‘-”.

Writing analogous equalities for B; and €; and adding
thein together, we obtain that the desired sum of squares
is equal to 342 1 4b%.

* Here and henceforward (1) means: I.F. Sharygin,
Problems in Plane Geometry (Nauka, Moscow, 1982).
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123. Let the side of the base of the pyramid be equal
to a, and the lateral edge to b. Through FE pass a plane
parallel to 4 SC and denote by K and N the points of in-
tersection of this plane with BC and SB. Since E is the
midpoint of the slant height of the face SCB, we have
| AF| =|CK|=ual4,| SN| =0bl4, | KE| =2 | EN |.

Through L draw a straight line parallel to AS and
denote its point of intersection with SC by P. We shall
have | SP | = 0.1b. The triangles LPC and FNK are
similar, their correspondinF sides are parallel, besides,
LM and FE are also parallel, that is, | PM |/| MC | =
| NE|/| EK| = 1/2, consequently, | SM | = 0.4b.

Now, find

19 15 1
2___Y 42 2___ Y a2 - _p2
| LF | 400“’IMEI_'400a+100b'
From the condition | LF | = | ME | we get a = b. FNK

is a regular triangle with side% a, | FE |2 = 17_6 a® = 1.

Consequently, a = b = 4.
Answer: % ]/§

124. Prove that the plane cutting the lateral surface
of the cylinder divides its volume in the same ratio in
wbich it dividgs the axis of the cylinder.

na
24 -

125. Each face of the prism represents a parallelo-
gram. If we connect the point of contact of this face and
the inscribed ball with all the vertices of this parallelo-
gram, then our face will be broken into four triangles,
the sum of the areas of two of them adjacent to the sides
of the bases being equal to the sum of the areas of the
other two. The areas of triangles of the first type for all
the lateral faces will amount to 2S. Hence, the lateral area
%s egual to 48, and the total surface area of the prism
o 6S.

126. If the spheres o and B intersected, then the
surface area of the part of the sphere B enclosed inside
the sphere o would be equal to one fourth the total sur-
face area of the sphere «. (This part would represent

Answer:
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2
a spherical segment with altitude ;—R’ where r is the
radius of o, R the’radius of B. Consequently, its surface
area will be 2nR -2% = mr?,) Hence, the sphere o contains

inside itself the sphere B, and the ratio of the radii is
equal to V5.

127. When solving this problem, the following facts
are used:

(1) the centre of the ball inscribed in the cone lies
on the surface of the second ball (consider the correspond-
ing statement from plane geometry);

(2) from the fact that the centre of the inscribed ball
lies on the surface of the second ball will follow that the
surface area of the inscribed ball will be equal to 4(Q,

and its radius will be V' Q/x;

(3) the volume of the frustum of a cone in which the
ball is inscribed is also expressed in terms of the total
surface area of the frustum and the radius of the ball (the
same as the volume of the circumscribed polyhedron),

that is, V = l SV.Q.
3 n

128. Prove that if R and r are the radii of the circles
of the bases of the frustum of a cone, then the radius

of the inscribed ball will be V Rr.
.S

A nswer: 5
' 129. Any of the sections under consideration repre-
sents an isosceles triangle whose lateral sides are equal to
the generatrix of the cone. Consequently, the greatest area
is possessed by the section in which the greatest value is
attained by the sine of the vertex angle. If the angle
at the vertex of the axial section of the cone is acute,
then the axial section has the greatest area. If this angle
is obtuse, then the greatest area is possessed by a right
triangle.

A nswer: & R,
6

130. Draw SO which is the altitude of the cone to form
three pyramids: SABQ, SBCO, and SCAQ. Ineach of these
pyramids the "dihedral angles at the lateral edges S4
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and SB, SB and SC, SC and SA are congruent. Denoting
these angles by z, y, and z, we get the system

z-4y=p,
yt+z=v,
Z+.’B=a,,

whence we find z==E—2Eﬂ, and the desired angle

will be equal to u—a—lz-ﬁ—y .

131. The chord BC is parallel to any plane passing
through the midpoints of the chords AB and A . Conse-
quently, the chord BC is parallel to the plane passing
through the centre of the sphere and the midpoints of the

arcs AB and AC. Hence it follows that the great circle
passing through B and C and the great circle passing

through the midpoints of the arcs AB and AC intersect
at two points K and K, so that the diameter K X, is paral-
lel to the chord BC.

R l

Answer: '-2—" o '—2- .

132. 1t is easy to see that the section of the given
solid by a plane perpendicular to the axis of rotation re-

resents an annulus whose area is independent of the
istance between the axis of rotation and the plane of
the triangle.

nady 3

Answer: 5% -

133. If the given plane figure represents a convex pol-
ygon, then the solid under consideration consists of
a prism of volume’ 24S, half-cylinders with total vol-
ume spd?, and a set of spherical sectors whose sum is a ball

of volume Emﬁ. Consequently, in this case the volume of

the solid will be equal to 2dS + npd® %mﬁ. Obvious-
ly, this formula also holds for an arbitrary convex figure
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134. Let O be the centre of the ball, CD its diameter,
and M the midpoint of BC. Prove that | AB | = | AC|.
Here, it is sufficient to prove that 4 M is perpendicular
to BC. By the hypothesis, S4 is perpendicular to 0S,
besides, SM is perpendicular to OS (the triangles CSD,
CSB, BCD are right triangles, 0 and M are the respective
midpoints of CD and CB). COnsequent?, the plane A MS
is perpendicular to 0S, A M is perpendicular to OS. But
A M is perpendicular to CD, hence, A M is perpendicular
to the plane BCD, thus, 4 M is perpendicular to BC.

. Ra3V ipE—q?
135. In Fig. 21, a: SABC is the given pyramid, SO
is its altitude, and G is the vertex of the trihedral angle.

Fig. 21

It follows from the hypothesis, that G lieson SO. Besides,
intersecting the plane of the base ABC, the faces of the
trihedral angle Igrm a regular triangle whose sides are

arallel to the sides of the triangle A BC and pass through
its vertices. Consequently, if one of the edges of the trihe-
dral angle intersects the plane ABC at point E and the
edge CSB at {)oint F, then F lies on the slant height SD
of the lateral face CSB, and | ED| = { DA |. By the
hypothesis, | SF| = | FD |. Through § draw a straight
line parallel to £0 and denote by K the point of inter-
section of this line with the line EF (Fig. 21, b). We have

_ |SG|_ | SK|_|ED| _ 3
|SK|—|ED|.Hence,IGOI—-'EO'—'EO'—é.
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Thus, the volume of the pyramid GABC is 4/7 the
volume of the pyramid SABC.

On the other hand, the constructed trihedral angle di-
vides the portion of the pyramid above the pyramid
GABC into two equal parts.

Answer. The volume of the portion of the pyramid
outside the trihedral angle is to the volume of the por-
tion inside it as 3: 11.

vV
136. 3

137. Figure 22, ¢ to d, shows the common parts of
these two pyramids for all the four cases.

(1) The common part represents a parallelepiped
(Fig. 22, a). To determine the volume, it is necessary
from the volume of the original pyramid to subtract the
volumes of three pyramids similar to it with the ratio of
similitude 2/3 and to add the volumes of three pyramids
also similar to the original pyramid with the ratio of
similitude 4/3. Thus, the volume is equal to:

r [-a(3) 40 (4)]-4v

(2) The common part is an octahedron (Fig. 22, b)
whose volume is

/e (4))-4

(38) The common part is represented in Fig. 22, ¢. To
determine its volume it is necessary from the volume of
the original pyramid to subtract the volume of the pyra-
mid similar to it with the ratio of similitude equal to 1/3
(in the figure this pyramid is at the top), then to subtract
the volumes of three pyramids also similar to the origi-
nal pyramid with the ratio of similitude eqlxllal to 5/9
and to add the volumes of three pyramids with the ratio
of similitude equal to 1/9. Thus, the volume of the com-
mon part is equal to

(=) -0 (5) 0 (4) ]38
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Fig. 22

(4) The common part is represented in Fig. 22, d. Its
volume is

vli=(5) - () 2 () =%

138. Let the edge of the regular tetrahedron ABCD
be equal to a, and K and L be the midpoints of the edges



Answers, Hints, Solutions 123

CD and AB (Fig. 23). On the edge CB take a point M
and through this point draw asection perpendicular to K L.
Setting | CM | = z, determine thequantity = for which
the rectangle obtained in our section will have the angle

A

Fig. 23

between the diagonals equal to a. Since the sides of the
obtained rectangle are equal to z and a — xz, = can be
evaluated from the following equation:

o

a tan —
=tani r= ——————2
2 ’ ]

(04
1—]-13311-2—

If we take on the edge BC one more point N such that
| BN | = | CM | = z, and through this point draw a sec-
tion perpendicular to KL, then we shall obtain another
rectangle with the angle between the diagonals equal to a.
Hence it follows that, on being rotated anticlockwise
about KL through an angle «, the plane BCD will pass
throulgh the points K, P, and N. Thus, on being rotated,
the plane BCD will cut off the tetrahedron 4BCD a pyra-
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mid KPNC whose volume is equal to

|EC| |CP| |CN |
|CD| |CA| | CB |

Vapcp= 3—-(-;—‘1_-;-—%)— |4
_ tan -g- .

2(1—|-tan .gi)z

Similar reasoning will do for any face of the tetrahedron.
Consequently, the volume of the common part will be

1+tan=2‘2-

(1+tanf?f_)’ '

139. Let the cube ABCDA,B,C,D, be rotated through
an angle o about the diagonal AC, (Fig. 24). On the edges

equal to

2, 1\ A Q

Fig. 24

A.,B, and 4,D, take points K and L such that | 4,k | =
| A,L| = z, from K and L drop perpendiculars on the
diagonal AC,; since the cube is symmetric with respect
to the plane ACC,4,, these perpendiculars will pass
through one point A/ on the diagonal AC,. Let = be chosen

P
so that KML = a. Then, after rotating about the diago-
nal AC, anticlockwise (when viewed in the direction from
A to CJ through an an%Ie o, the point K will move into L.
On the edges By4, and BB take points P and @ at the
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same distance z {rom the vertex B,. After the same rota-
tion the point Q will move into P. Consequently, after
the rotation the face ABB,4, will pass through the points
A, L, and P and will cut off our cube a pyramid A4,PL

whose volume is equal to —(1).— ar (a — z). The same reason-

ing is true for all the faces. Thus, the volume of the
common part is equal to a® — azx (¢ — z). It now remains

S
to find = from the condition KML = a. To this end,
{Jc‘}in ﬁla to the midpoint of the line segment LK, point R.
e ve

| MR | — Y2 &, | C,R| = aV’é‘—xﬁ,
2 2 2
and from the similarity of the triangles C,RM
and C,4,4 find z = 24 .
14+ V3 cot-;-‘

Thus, the volume of the common part is equal to

3a3 (1—l-cot2 .-g.‘-)
(14 Fcot _;j.)"‘ '

140. Let A be some point on the ray, B the point of in-
cidence of the ray on the mirror, X and L the projections
of A on the given mirror and rotated mirror, 4, and 4,
the points symmetric to 4 with respect to these mirrors,
respectively, The sought-for angle is equal to the

P
angle A,BA;.1f | AB | = a,then| 4,B| = | 43B | = q,

N
| AK| = asin . Since KAL = f, we have | KL |
| AK|sinf =a sin asinf, |44, | =2]| KL|
2a sin & sin PB. Thus, if ¢ is the desired angle, then

sin %) = sin « sin f.

Bl

Answer: 2 arcsin (sin o sin f).
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141. Fix the triangle ABC, then known in the triangle

N\
ADC are two sides| AC | and | DC | and the angle ADC =
a. In the plane of the triangle ADC construct a circle
of radius | AC | centred;at C (Fig. 25, a). If o> 60°,

Fig. 25

then there exists only one triangle having the given
sides and angle (the second point 4, will turn out to lie
on the other side of the point D); this is a triangle con-
gruent to the triangle ABC. In this case AC and BD are
mutually perpendicular.

And if o << 60° then there is another possibility (in
Fig. 25, a, this is the triangle 4,DC). In this triangle

N o N 3 .
CAD = 90° 4 5 A,CD = 90° — R But in this case

N
the vertex C (Fig. 25, b) is common for the angles BCA, =
a 43 N 3a .
90° — 5 BCD = a, A,CD = 90° — - and since 90°—

g'= (90°— 3_2"5) 4 a, the points 4,, B, C, and D lie in

the same plane, and the angle between 4,C and BD will
be equal to «.

Answer: if oo > 60°, then the angle between A C and BD
is equal to 90°, if o << 60°, then the angle between AC and
BD can be equal to either 90° or a.
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142, Let the base of the prism be the polygon 4,4,. . .
. . .Ap, O the centre of the circle circumscribed about it.
Let then a certain plane cut the edges of the ﬁrism at
points B,, B,, .. ., B,, and M be a lpoini; in;the plane
such that the line MO is perpendicular to the plane of
the base of the prism. Then the following equalities hold:

n

M | ApBy |=n|MO|, (1)
=1

V=S| MO |, ®)

where V is the volume of the part of the prism enclosed
between the_ base and the passed plane.
Prove”Eguality (1). For an even n it is obvious.
Let n be odd. Consider the triangle 4,A4,,,4;, where 4,
is the vertex most distant from 4, and 4;,,. Let C; and
C;, be the midpoints of 4,44, and ByBp+;, respectively,

Then | CrO1 _ cos X = A. Now, it is easy to prove
hat | OA; | n
_ 1 ChCh 1+ 14:Bi
| MO 1= 142
1
< (1 AxBr |+ | Arg1Bray D)+ | 41Br | A

- 14-A
Adding these equalities for all k¥'s (for ¥ = n instead of
n 4+ 1 take 1), we get Statement (1).

To prove Equality (2), consider the polyhedron
ApAp,OBLBy M. 1f now Vy is the volume of this polg—
hedron, then, f»y Simpson’s formula, we have (see Prob-

lem 15)
V= bn ( | ApBr |+ | Ar41Brsq |
T8 2
4 |Ath|+|Ah+1Bk+1|+2|M0|_fl)
4 2

=anbn (| AxBr |+ 14r+1Brey | | MO |)
Sr
= 7= (14kBrl+|4rs1Bras 1M O)),
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)

where a,, b, are the side(and the slant height of the
poilygon A;A,. . .Ay. Adding these equalities for all K’s
an (t)a\king (1) into consideration, we get Equali-
ty .

Now, it is not difficult to conclude that the answer to

our problem will be the quantity %Y-
143. Let the pentagon ABCDE be the projection of the
regular pentagon, where | AB | = 1,| BC| = 2,| CD |=

a, ABCD isa trapezoid in which : ég : = =1 —;V 5

F the point of intersection of its diagonals, A FDE is
E
A D
B c
Fig. 26

a parallelogram. Draw CK parallel to AB (Fig. 26). In
the triangle CKXD we have: | CK | =1,| KD | = 2( A —

N
1), | CD | = a. Set CDK = ¢. Write the theorem of
cosines for the triangles CXD and ACD:

{=a4+4A—1)®*—4(A—1)acosq,
| AC |3 = a® |- §\® — 4al cos ¢.

From these two relationships we find

S__3)—a’
ac1=y/ & —

_ A 4A3—3\—a’
B0 \= 147 | = )/ ST
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Similarly, we find

AE | = =
| AE | IFDI A1 T—1

¢ Answer Two other 31des are equal to

1/51

and

V5—1
4

]/14+10 V5—2 (V541 a?

-

V@ 6+2V5)+6 (V5+1)

The problem has a solution for ¥'5 — 2 < a <V 5.

WY g 7 ey gy ¢y

129

144. Let the edge of the cube be equal to a, | NC, | =

z. Find
|LM|—2, |NK|_

V"

| LN I”-%LBl IZ-I-IBlN | 2= ~+(a~x)’

::-2— a?—2ax -+ x2,

1 LK |*=| LB, |2+ | B,K |?
=| LB, |*+ | B,N |*+| NK |?

2
+2| BN |- INKIV

- =T+(a'—x)2+ "—'_l—(a—-x) x

z2
=3 az—ax+

T4

T Baz
| MN |2= | MB; |*+ | BN |* ==
| MK |*=| MB|*+ | BK |*~| MB | - | BK |
3a? 3 z?

2 TT e

9—0449

—2az -} x2,
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P VAN -
I{ LMK = MKN = ¢, then by the theorem of cosines,

for the triangles LMK and MKN we get:
| LK1= |LM|*+ | MK |* — 2 |LM |- |MK | cos g,
| MN|* = |MK|*+ | KN |* — 2 |MK |-] KN| cos q.

Eliminating cos ¢ from these equations, we get
| LK |* « |[KN| — | MN || LM |
=(LM|—|EN|)(I LM |- |KN | — | MK 3).

Expressing the line segments entering this equality
with the aid of the found formulas, we get

(5§ g ()
a 3a3+3gz__z;).

=(7—1/:'c§)(za;'§_' P
L)
5 ) .

From this equation we find 2=a (1-—-

Answer: :-%-E.N—:= V2+41.
1

145. Two cases are possible: (1) the centre of the circum-
scribed sphere coincides with the centre of the base and (2)
the centre of the circumscribed sphere is found at the
point of the surface of the inscribed sphere diametrically
opposite to the centre of the base.

In the second case, denoting by R and r the radii of
the respective inscribed and circumscribed spheres, find
the altitude of the pyramid 2r 4+ R and the side of the
base ¥ R® —4r*. The section passing through the altitude
and midpoint of the side of the base is an isosceles triangle

with altitude R -+ 2r, base ¥ 3 (R — 4r%) and radius of
the inscribed circle equal to r. Proceeding from this, it
is possible to get the relationship 3R* — 6Rr — 42 =0
for R and r.

Answer: 3_:_}-?]/_2_1 (in both cases).
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146. Two cases are possible: (1) the centre of the
circumscribed ball coincides with the centre of the base,
(2) the centre of the circumscribed sphere is found at the
point of the surface of the inscribed ball diametrically
opposite to the centre of the base. In the first case, the
plane angle at the vertex is equal to /2.

Consider the second case. Denote by a, b, and ! the
side of the base, lateral edge, and the slant height of the
lateral face, respectively. Then

a?
=0+, )

the radius r of the inscribed ball is equal to the radius
of the circle inscribed in the isosceles triangle with base a
and lateral side I:

a]/21-—-a
_aya—a 2
T Y Vaita @

the radius R of the circumscribed ball is equal to the
radius of the circle circumscribed about the isosceles

triangle with base a V2 and lateral side &:

2 /3

R V2 @
2V 202 —a?

Here, the centre of the circle must lir inside the triangle,

which means that b > a. Since the distance from the
centre of the circumscribed ball to the base is 2r, we have

R? — %E = 4r2, Substituting the values of R and r ex-

pressed by Formulas (2) and (3) into this equality, we
get after simplification:

(b2—a?)?  a?(2]—a)

2 (2% —a?)  2lta

Expressing b in terms of a and ! by Formula (1),
we get

(12—3—23-)2612 (21— a)e.

g
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'Taking into account that b >aori>a ..]./2...3,'we obtain
that g and I satisfy the equation

3
lﬂ—f—i——: a (21—a),

1 _,, V3 . 1 V3
whence - =14 5 (for_the second root 'E'<T) .

n n

An:swer. 3 or -

147, Let K be the projection of the vertex 'S on the
plane ABCD, and let L, M, N, and P be the projection
of S on the respective sides AB, BC, CD, and DA.

It follows from the hypothesis that LSN and MSP are
right triangles with right angles at the vertex §. Conse-
quently, | LK |-| KN | = | MK |+| KP | = | KS |*. And

Fig. 27

since | LK| + |KN| = | MK |
cagses are possible: either | LK | =
|.KN |, or | LK|=| KP|, | MK | = |
the point K lies either on the diagonal A
sidel;l botlll cases.h 1 |

(1) K lies on the diagonal BD (Fig. 27, a). The fi
represents the projection of the pyragmid on the pﬂllll.:
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ABCD. The point S is found “above” K. Setting |LK|=
| KM | = z, we now find:

| KS|=V LK | - | KN | =V z (a—2z),
| SL|=V LK >+ | KS *=V ez,

. _aV@
P ABS = 5 .

Analogously, Ssps= ¢ ]/az(a-—-a:)

. Further, V4pps=

%a’ Vaz (a—=zx). On the other hand, by the formulg

of Problem 11, we have

74 2 SABsSBpssina
ABDS=‘? IAKI

. a®Vz(a—2) sina
6V e—a tatz(e—a)

Equating two expressions for V,4pps, we get
2 —axr 4 a®costa =0,

whence z (¢ — z) = a? cos? a,

v ad[cosa
ABCDS=——3'—‘—.

The problem has a solution if |cos ] << % Besides, the

angle at the edge AS is obtuse, since the plane ASM
is perpendicular to the face ASD, and this plane"passes
inside the dihedral angle between the planes ASB and
ASD. Consequently, in the first case the problem has
a solution if g.< a< -2-; ,

(2) The point KX lies on the diagonal AC (Fig. 27, b).
Reasoning as in Case (1), we get (as before, | LK | = 2):

v __at ]/x(a—x)= a®z sin o
_IABDS 6 BVz—(x——_l_x),
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whence we easily find r=a |cos |,

V— a3V |cosa|(1—|cosa|)
= 5 .
The same as in the first case, o > % Thus, we get the

answer.
Answer: if -g—<az.\<,—2—:3i , two answers are possible;
a3 cos o a® YV —cosa (1 cos a)
Vi=———a—, V3= 3
6 6
i a>_2§:l'_l‘._' v a® V——cosog(i—]—cosa) i

148. Let us first solve the following problem. In the
triangle ABC points L and K are taken on the sides AB
and AC so that II_‘;:.%_II = m, II—%{C(_II= n. What is the
ratio in which the median 4 M is divided by the line KL?

Denote by N the point of intersection of KL and 4 M;
Q is the point of intersection of KL and BC, P is the
point of intersection of KL and the straight line parallel
to BC and passing through 4. Let | BC| = 24, | QC | =
b, | AP | = ¢, n > m. Then, from the similarity of the

corresponding triangles we shall have: _g = n,

JAN| _ ¢ _ 2mn
INM| b+a m+n

Let now m, n, and p be the ratios in which the edges
AB, AC, and AD are divided by the plane. To determine
them, we shall have the following system:

c —_—
b4 2a
m, whence

’

2mn —2 2np 1 2pm__
m-+4-n " nd4p 2’ p4+m ’
whence
5 9 9 ] 7 L]
The fact that —1 < m << 0 means that the point L lies
on the extension of AB beyond the point 4, that is, our
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glane intersects the edges AC, AD, BC, and BD. Further,
etermining the ratios in which the edges BC and BD are

divided { we shall get %and-g-) , we find the answer: 12;3 T

149. Consider the pyramid SABC (Fig. 28) in which

2N, 2 . :
|CA | =|AB|, BAC=T, SA 1is perpendicular to the
plane ABC, and such that the vertex 4 is projected on

S

Fig. 28

the plane SBC into the point O which is the centre of the
eircle inscribed in SBC.

Let us inscribe a come in this pyramid so that its
vertex coincides with 4, and the circle of its base is rep-
resented by the circle inscribed in SBC. It is obvious
that if we take n such pyramids whose bases lie in the
plane ABC so that their {vases congruent to the triangle
ABC form a regular n-gon with centre at 4, then the
cones inscribed in these pyramids form the desired system
of cones.

Further, let D [be the :nidpoint of BC, | 0D |=r,

{ AD =1. Then jSDl..—_—lr—, | BD | =1 tan -’;_ Since

L 2\ AN D
$o—aftd,  ngpp-ABL__ 1 _

L1
rtan —
n
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AN P
tan OBD=———r-—n—- , we may write the equation

! tan —
n
r
2 n
! tan —
l _ n :
— 3 ,
rtan — {—
[2 tan2 — ¥
n "
tan —— 1"1'

r
whence — ==

n
l ]/ T
14-2 tan "
n

tan —
Answer: 2 arcsin n el
14-2 tan? —

n i ‘
150. Let the"plane A KN touch the.ball at the point P,
and the straight line AP intersect NX at the point M

Fig. 29

(Fig. 29). Then the plane :CINA is the i)is;astor pfanp-\gf
the dihedral angle formed by the planes D,C;4 and C,MA
(the planes D;AN and ANM touch the ﬁall, and the
planes D,C,4 and C.MA pass through its centre). In the
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same way, the plane €;KA is the bisector plane of the
dihedral angle formed by the planes MC,4 and C,B;A.
Thus, the dihedral angle between the planes AC,K and
AC,N is one-half the dihedral angle between the planes
AD,C, and AB,C, equal to 2m/3.

A nswer: /3. )

151. Let K, L, and M be the midpoints of the edges
AB, AC, and AD (Fig. 30). From the conditions of the

Fig. 30 .

problem it then follows that' the tetrahedron A,B,C,D,
is bounded by the planes DKA,, BLA;, CMA,, and the
plane passing through 4 paraatllell to BCD. And tﬁe vertices
B,, C,, and D, are arranged so that the points M, K,
and L are the midpoints of CB,, DC;, and BD, (the
points B,, C;, and D, are not shown in the figure).

Let now Q be the midpeint of BC, P the point of
intersection of BL and KQ. To find the volume of the
common part of two pyramids ABCD and 4,B,C,D,, we
must from the volume V of the pyramid ABCD subtract
the volumes of three pyramids equivalent to DKXBQ (each

of them has the volume egual to é V),and add the vol-
umes of three pyramids equivalent to’4,BQP. The volime
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of the last pyramid is equal to -2171 V. Thus, the volume

of the common part is equal to g V.

152. Let us first prove that the dihedral angles at the
edges DB and AC are equal to /2 (each). Let | AD | =
|CD| =|BC| =ua, |BD|=|AC| =8, |AB| =c¢,

Fig. 31

b> a. From D and C drop perpendiculars DK and CL on
the edge AB (Fig. 31, a). Let us introduce the following
notation:

| AK|=|BL| =2, | KL|=|c—2z|, | DK| =
| CL| = h.

Since the dihedral angle at the edge AB is equal to
n/3, we have |DC|12=]|DK|24 |CL|2—|DK| X
| CL | + | KL |*, that 18, a® = h* 4 (c—2z)®. Replac-
ing h* by a%* — 22, we get 32® — 4cx 4 ¢ = 0, whence
z; = ¢/3, zo = ¢. From the condition b > a it follows
that z < ¢/2, hence z = ¢/3. Thus, the quantities a, b,
and ¢ are related as follows: ¢2 = 3 (¥ — a?).

Find the areas of the triangles ABD and ACD:

1 cd 1 /" 4ad—=p3
SABD=SABC"—""§‘¢ ]/a’—-_?:Tc ——-3——- '

Sacp=8ppc= %b V&a’-—-bi.
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Expressing the volume of the tetrahedron ABCD by
the formula of Problem 11 in terms of the dihedral angle
at the edge AB and the areas of the faces ABD and ABC,
and then in terms of cﬁthe dihedral angle at the edge AC
(it is also equal to the alhgle at the edge BD) and the

areas of the faces ABC and ACD, we get
1 SappS V3 1 SicpS .
Vv — .1 SABDYABC , __1 sacpdaBc
ABCD == [ 4B | 5 3 TAC | sin @,
whence

sin = S ABD |AC|.]/§
Sacp |AB| 2

9 l/{gaz—-b2
¢ 3 b V3

L] =i'
bV ha2—b2 ¢ 2

p——

Hence, ¢= —g- .

To determine the sum of the remaining three dihedral
angles, consider the prism BCDMNA (Fig. 31, b). The
tetrahedron ABCN is congruent to the tetrahedron
ABCD, since the plane ABC is perpendicular to the plane
of ADCN, but ADCN is a rhombus, consequently, the
tetrahedra ABCD and ABCN are symmetric with respect
to the plane BCA. Just in the same way the tetrahedron
ABMN is symmetric to the tetrahedron ABCN with re-
spect to the plane ABN (the angle at the edge BN in the
tetrahedron ABCN is congruent to the angle at the edge
BD of the tetrahedron ABCD, that is, equal to n/2), conse-
quently, the tetrahedron ABMAN is congruent to the
tetrahedron ABCN and is congruent to the original
tetrahedron ABCD.

The dihedral angles of the prism at the edges CN and
BM are respectively congruent to the dihedral angles at
the edﬁes DC and BC of the tetrahedron ABCD. And
since the sum of the dihedral angles at the lateral edges
of the triangular prism is equal to x, the sum of the dihed-
ral angles at the edges AD, DC, and CB of the tetrahed-
ron ABCD is also equal to x, and the sum of all the
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dihedral angles of the tetrahedron excluding the given
angle at the edge AB is equal to 2m.

153. Let in the triangle ABC the sides BC, CA, and
A B be respectively equal to a, b, and ¢. Since the pyramids
ABCC,, ABB,C,, and AA,B,C, are congruent, it follows
that each of them has two faces congruent to the triangle
ABC. Indeed, if each pyramid had only one such face,
then between the vertices of the pyramids ABCC, and
A.B,C,A thers would be the correspondence 4 — A4,,

4
(8) "
Fig. 32
B — Bl’ C— Cl, Cl—)-A, that iS, I CC]_I == I AC I,
| BC, |"=| B;A |, and this would mean that none of the

faces in the pyramid ABC,B,; is equal to the triangle ABC.
Now, it is easy to conclude that the lateral edge of the
prism is equal to a, or b, or ¢ (if, for instance, the
triangle AC,B is confuent to the triangle ABC, then
the face 4,B4 in the pyramid A,B,C,4 corresponds
to the face AC,B of the pyramid ABCC; and the tri-
angle 4,B,4 is congruent to the_triangle ABC).
- Consider all possible cases.
- (1) |AA4; | =|BB;| =|CC,| =a (Fcig. 32, a).
Then from the vertex C of the pyramid ABCC, two edges
of length a and one edge of length b emanate, and an e
of length ¢ lies opposite the edge CC,. Hence it follows
that to the vertex C of the pyramid 4ABCC; there must
correspond the vertex C; of the pyramid A4,B,C;4 and
{ AC, | = a. Now it is possible to conclude that | AB, | =
| BC, | = b. ;

In all the three pyramids, the dihedral angles at the
edges of length b are congruent, the sum of two such
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angles being equal to m (for instance, two angles at the
edge C,B in the pyramids ABCC, and ABB,(,), that is,
each of them is equal to m/2.

Draw perpendiculars BZL and C,K to the edge AC
(Fig. 32, b). Since the dihedral angle at the edge AC is
equal to 90°, we have

B=|CBP=|CKP+|KL*+|LB|?

=|CCI2P—|KC|IP+ (I KC| — | LC|)* + |BCJ?
—| LC |?2 = 2a% — buz,
where z = | LC |, and is found from the equation
2 2 2
8,82 (p_ a2 g EDE—c?

Thus, 342 — 302 4 ¢2 = 0. But, by the hypothesis,
ABC is a right triangle. This is possible only under the

c<;n/(1ition ¢2 = a? 4 b2, Consequently, b = aV2, c=
aV 3.

Now, it is possible to find the dihedral angle at the

o )

edge BC of our prism. ACC, = n/4 is the linear angle of
this dihedral angle (ABC and C,CB are right triangles
with right angles at the vertex C). The dihedral angle
at the edge AB of the Eyramid ABCC, is equal to /3.
Let us show this. Let this angle be equal to ¢. Then the
dihedral angle at the edge AB of the prism ABCA,B,C, is
equal to 2¢, and at the edge 4,B; to ¢. Thus,

3q)=ﬁ, q)=i3t—.

(2) | AA, | = | BB, | = | CC,| = b (Fig. 32,¢). In
this case, in the Iiyramid ABCC, two edges of length b
and one edge of length a« emanate from the vertex C.
Hence, the pyramid 4,B,C,4 hasalso such a vertex. It can
be either the vertex 4 or C,. In both cases we get | AB,|=
a, | AC, | = b (we remind here that two faces with sides
a, b, and ¢ must be found). Thus, each of the pyramids
ABCC, and A,B;C;A has one face representing a regular
triangle with side b, while the pyramid 4 BB, has not
such a face whatever the length of the edge BC, is. Thus,
this case is impossible, )
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(3) | AA | = | BB, | = | €C, | = c. This case actu-
ally coincides with the first, only the bases ABC and
A,B,C, are interchanged.

Answer: T2 (or —3—“:-) X or 2% )
c 27 4 ( 4 ) 3 ( 3/

154. Drop perpendiculars A, M and B;M on CD, B;N
and C;N on AD, C,K and D,K on AB, D,L and A,L
on CB,.

Since
|4M ] |IBN| [|CKI|I _I1DL|I__ 1

1B.M | [NC, | 1KD;| 14,L] 3

(these ratios are equal to the cosine of the dihedral angle
at the edges of the tetrahedron) and |4,B,|= |B:C;| =

Fig. 33

| C\D, | = | D;A, |, the following equalities must be
fulllled: | A M| = |BN|=|CK|=|DL|=ax,
|B;M | = | NC, | = | KD, | = | A,L | = 3z (Fig. 33
represents the development of the tetrahedron). Each of
the edges CD, DA, AB, and BC will turn out to be di-
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vided into line segments m and n as is shown in the figure.

Bearing in mind that m 4 n = a, we find z = ag3’
Sa

m=-,n= —:—g— , and then find the volume of the tetra-

hedron A4,B,C:D;.
a3 V2
162
155. Without loss of generality, we will regard that
all the elements of the cone tangent to the balls are in

Answer:

Fig. 34

contact simultaneously with two balls: inner and outer.
Let us pass a section through the vertex S of the cone
and the centres of the two balls touching one element
(Fig. 34, the notation is clear from the figure). From the
condition that » balls of radius R touch one another there

follows the equality | 04 | = , analogously,

Sill?
|OB | = ZRn . Consequently | AB | = a = Ru
sin — sin —
n n
Let | AC | = =. Thentana=§,cota= ff" . Mul-

tiplying these equalities, we get the equation for z:

2? — ax 4 2R%2 = 0,
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sV a®—8R? L0t Va2=8R% -

whence z;= 2 ’ 2= D)

iy
where a=

NN | 2

sSin —-;‘— . ‘ .
The condition a2-—8R%?>0 yields the inequality
)4 1

in— < ———. Besides, there must be fulfilled the in-
sin n~ = 2_'/-2 . u G

equality tan oi=%-'<31. Now, it is not difficult.to obr

1 14 1
tain that the root z; fits if — << sin —< —
' 3 T 2V2
the root z, it remains one restriction: sin Et—--.,{ 1 -
) 2V 2

-~ onl
2V 2 ey

The volume of the cbné will be equal to —%— n (¢ +

z)® tan 2c.. Expressing a, z, and tan 2a in terms of R and
n bi the appropriate formulas, we get the answer.
nswer.

um(3+l/1—83m2 ) 1+]/1 8 sin? = )

1281n1“-—(1 63111’-—-—1—]/1 8sin? - )

. Fﬂr

n
It is possible to prove that % << sin i':-,.{

for n=09.

V=

. .- | n =9,
Besides, for n=9 orie more value is possible:

. - 3
RS (3-—-1/1-831112 ) (‘1— ]/«1—8311121)

123111’ 9 (1 ﬁsm’—-——l/i 831112

156. Projecting the cube on the plane perpendicular to
B\D, we get a regular hexagon ABCC,D4, (Fig. 35) with
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side l/g a=1", where a is the edge of the cube (the regu-

lar triangle BC;A; will be projected into a congruent
triangle, since the plane of BC;A; is perpendicular to

™
M G4
+ D
M
A ¢
B
[ee)
S
Fig.§35

BAD). Consider the triangle KAC,, where | KA | ==
|AC1| =20, the line N M passes through the midpoint of

AC;. Letl_Zﬁ = z. We then draw C;L parallel to
MN. We have:
ML | = |AM |,

|KN| |KM| 242z
RC, |~ 1KL] — 2325

whence
} BN | —_ 2(IKN |—|BC))
| BCy | | XC, |
|RN | 24z 1 ‘.

=2 _—1= — =
(KRG 1 A%z T T¥ze
[0-0449
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Thus,
|BC1|__|AM|*_ L
BN | 144 - 1te—==L

157. If two noncongruent and similar triangles have
two equal sides, then it is easy to make sure that the
sides of each of them form a 1%eometric progression, and
the sides of one of them may be designated by a, Aa, A2a
and those of the other by Aa, Ala, A’a.

Further, if the sides of a triangle form a geometric
progression and two of them are equal to 3 and 5, then

the third side will be equal to /15 (in other cases the
sum of two sides will bhe Iess than the third one). Now, it
is easy to prove that in our tetrahedron two faces are

triangles with sides 3, ¥/ 15, 5 and two other faces have
sides V15, 5, 5 ]/g or 3 ]/—g, 3, V 15; accord-

ingly the problem has two answers: §_5_11__é'_§ and % V' 10.

158. Introduce a rectangular coordinate system so that
the first line coincides with the z-axis, the second line is
parallel to the y-axis and passes through the point
(0, 0, a), and the third line is parallel to z-axis and
passes through the point (a, a, 0). Let ABCDA,B,C1D, be
a parallelepiped in which the points A and C iie on the
first line and have the coordinates (z,, 0, 0), s.r,, 0, 0),
respectively, the points B and C; on the second line, their
coordinates are i] s Y1» @) and (0, y,, a), and the points D
and B, on the t ircf ]line, their respective coordinates are
(a, a, 3;) and (a,_)c_z, z,)._grom the condition of the equality

—_—
of the vectors AD = BC = B1Cy, we get a — 2 = z5 =

—a, g=—yl=yz—a, z1=—a2=a—z,, whence
2y =28, 3= =Gy Yy = — G Ys = 2a, Z; = — G, 34 =
2a. Thué, we haveA’( ’ ’ ’

a, 0’ 0), B 0, —a, a)’ C (“_"a’ 0" 0{,

D (a, a, —a), Bq (a, a, 2a), C; (0, 2a, a). It is possible
— -

to check that 4B = DC. Further, | AC| = 34, | AB | =

ayY'6,1 BC | = a}/'3, that is, ABC is a right triangle,

hence, the area of ABCD will be |AB|.{BC|=3a2} 2.
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The equation of the plane ABCD is y 4 z = 0, hence,
the distance from B; to this plane will be equal to _3a=.

V2
A nswer: 9ad3.
159. Consider the regular pyramid ABCDS in which
the section KLMNP is drawn representing a regular pen-

Fig. 36

tagon with side a (Fig. 36). Let the diagonal of the base
of the pyramid be equal to b, and its lateral edge to I. Let

us also set | SM | = zl, | SN | = yl. Since the pentagon
KLMNP is regular, we have

| LM | =23 cos e 12V 5 4

5 2
1--cos—2-:-t— =
| MF | 5 _V5—1_.
|FG| — = 2~ 2 "
cos?—kcos B
We have: | KP | =a, |GO | = b;“ . On the other hand,
SM b | MC|

10*



148 Problems in Solid Geometry

h(1—z), | FO | =h (1—1?, where & is the altitude of
the pyramid, consequently,

|GO | | OE | (1—y) zb

|FO|" |ME|—|FO| 2(y—=2) °*

Equating the found expressions for | GO |, we get the
equation

, 160 |=

A=wazb _,_ . (1)
y—z
Further
|OE | | MF|_,
| GO |7 |FG| ’
whence ‘
y—z
1—y =A. (2)
Since | LN|=pa, | LN|=y|DB|, we have
yb = pa. 3)
And, finally, consider the triangle PNB in which | PN | =
b—a ~ AN
a,| NB|l=(1—y)l, | PB|=—5— V2, cos PBN =
/N b
cos ABS = — .
2y 2
By the theorem of cosines, we get
—a)? —) (b—
a3=(1_y)ﬂls+(b 2“) __(i y)(zb a)b . (4)
Taking into consideration that ‘p=—-]-/-§2i—i—— s A=
]f5-2—1 , from Equations (1)-(3) we find y=V5; ,
b =V52+ 3 a, then from Equation (4) we get

p_a2043V5 8
4 -2
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Thus, the volume of the pyramid is equal to

LB p E_ B 0 V3 ,
3 2 T4 T 12 12 :

160. We introduce the usual notation: a, b, ¢ denote
the sides of the given triangle, h,, hy, k. its altitudes,
p one half of its perimeter, r the radius of the inscribed
circle. Let M denote the point of intersection of the
planes 4,B,C, A{BC,, and AB,C;, 0,, Oy, O, the cen-
tres of the externally inscribed circles (O, is the centre of
the circle touching the side BC and the extensions of AB
and AC, and so on). Prove that 0,0,0,M is the desired
pyramid, the altitude dropped from ttiw point M passing
through the centre of the inscribed circle (0), and | MO | =
2r.

Consider, for instance, the plane A;B,C. Let X be the
point of intersection of this plane witlln the line 4B,

1KA) _144,1 hs b _14C)
KB\ 1BB| 4 I|BC|’

that is, K is the point of intersection of the line AB and
the bisector of the exterior angle C. Hence it follows that
tbe base of our pyramid is indeed the triangle 0,0,0, and
that the point M is projected into the point 0. Find | M0 |:

| MO| 100, ro—r

hae  1AO0q|  rg '’
where r, is the radius of the externally inscribed circle
S S
centred at O,: r, = y 7= —, h,= —, conse-
p—a p a
quently,
11
| MO | =h, ra—rzzs p—a P=ZS=2r
e a 1 P
p—a

Find the area of the triangle 0,0,0,. Note that 0,4,
JpB, O.C are the altitudes of this triangle. The angles of
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the triangle 0,0,0, are found readily, for instance,

)

06/0:0b=B/0:;'=180°— (90°—-§-)-— (90° _

m| oy

A\
—_ °—w—
=90 5

Other angles are found in a similar way. The circle with
diameter 0,0, passes through B and C, consequently,

BC a
1060 | =— 25 2
sin BOyC sin%

exactly in the same way | 0,04 |= ck , hence
.. C
sin 7

SN c B
| 0l | = | 0q0p | 8in 0,0p4 = co8 - -
sin 5

Thus, the area of the triangle 0,0,0, (let us denote it
by Q) will be

O=—1- ac 003£
2 - A 2
sinisin—c—
2 2
=acsi4n§. _ 1. _ 1)

sin 4 sin -E-sing
2 2 2
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A

Find sin -g— :

. A _ ‘l/i—cosfl _]/ 1 b2} c2—a?
St 5 = 7 '32"(1— % )

=]/’ (p—b) (p—c)

be *

Then sin% and sin-g; are found in the same way.

Substituting them in (1), we get
abe
=S ,
= = - -0

and the volume of the pyramid M0,0;,0, will be

Saber 1 4
= —_—, ab = -
3(p—a)(p—b) (p—c) 3 = 3

4 SR,

Section 2

161. No, not in any.

162. The indicated progerty is possessed by a pyramid
in which two opposite dihedral angles are obtuse.

163. Prove that if the straight line isnot 111391'pendicu-
lar to the plane and forms equal angles with two inter-
secting lines in this plane, then the projection of this
line on the plane also makes equal angles with the same
lines, that is, it is parallel to the bisector of either of
the two angles made by them.

164. A triangle, a quadrilateral, and a hexagon.
A cube cannot be cut in a regular pentagon, since in a sec-
tion having more than three sides there is at least one
pair of parallel sides, but a regular pentagon has mno
parallel sides.

165. On the edges of the trihedral angle lay off equal
line segments S4, SB, and SC from the vertex S. Denote
by O the projection of S on the plane ABC. ASB and A0B
are isosceles triangles with a common base 4B, the lat-
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eral sides of the triangle 4 OB being shorter than those of

/N 7N\ .
the triangle A SB. Consequently, AOB > ASB. Similar
inequalities hold for other angles. Thus,

/N /N /N /N /N /N
ASB + BSC + CSA < AOB + BOC + COA< 2n.

(The last sum is equal to 2x if O is inside the triangle
AlBt):' and is less than 2x if O lies outside of this trian-
gle.

To prove the second statement, take an arbitrary point
inside the given angle and from this point drop perpen-
diculars on the faces of the given angle. These perpendicu-
lars will represent the edges of another trihedral angle.
(The obtained angle is called complementary to the given
trihedral angle. This tochnique is a standard method in
the geometry of trthedral angles.) The dihedral angles of
the given trihedral angle are complemented to s by the
plane angles of the complementary trihedral angle, and
vice versa. If a, B, y are the dihedral angles of the given
trihedral angle, then, using the above-proved inequality
for plane angles, we shall have (m—oa)+ (n —p) +
(v — 6(?) << 2n, whence it follows that ¢ 4+ 4+ vy > n.

166. (1) Let S be the vertex of the angle, M a point
on an edge, M, and M, the projections of M on two other
edges, NV the projection of M on the opposite face. Suppose
that the edge SM corresponds to the dihedral angle C.
If | SM | = a, then, finding successively | SM, | and
then from the triangle MAM,N, | MN |, or in a different
way, first | SM, |, and then from the triangle MM,N,
| MN |, we arrive at the equality

| MN | = asin @ sin B = a sin P sin 4,
that is,

sine  sinf
sin4d~— sinB ®

(2) Denote by a, b, and ¢ the unit vectors directed
along the edges of the trihedral angle (a lies opposite the
plane angle of size «, b opposite B, ¢ opposite y). The
vector b can be represented in the form: b = a cos y 4 1,
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where | 1| = siny, n is a vector perpendicular to a;
analogously, ¢ = a cos B+ & where |E| =sin f, § is
perpendicular to a. The angle between the vectors n and
is equal to 4.

Multiplying b and ¢ as scalars, we get

be = cos o = (a cos y + n) (a cos f 4 &)
== cos P cos y 4 sin P sin y cos 4,

which was just required to be proved.

(3) From a point inside the angle drop perpendiculars
on the faces of the given angle. We get, as is known (see
Problem 165{, a trihedral angle complementary to the
glilven. The plane angles of the given trihedral angle make
the dihedral angle of the complementary angle be equal
to m. Applying the first theorem of cosines to the comple-
mentary trihedral angle, we get our statement.

167. Take advantage of the first theorem of cosines
(see Problem 166).

168. Take advantage of the second theorem of co-
sines (see Problem 166).

169. The sum of all the plane angles of the tetrahedron
is equal to 4n. Hence, there is a vertex the sum of plane
angles at which does not exceed :. All the plane angles
at this angle are acute. Otherwise, one angle would be
greater than the sum of two others.

170. This property is possessed by the edge having
the greatest length.

171. Let ABC be a perpendicular section, | BC | = a,
|CA|=0b, | AB| = c. Through A pass the section
AB;C, (B and B,, C and C; lie on the corresponding edges).
Letthen | BB, | = |z |,]| CC, | = | y|. (If B, and C, lie
on one side from the plane ABC, then z and y have the
same sign, and if on different sides, then x and y have
opposite signs.) For the triangle AB,C, to be regular,
it is necessary and sufficient that the folllowing equalities
be fulfilled:

24 2% = b2+ P
2+ 2= a?+ (z — y)%

Let us show that this system has always a solution. Let
1> b and ¢ > b. It is easy to show that the set of points
n the (z, y)-plane satisfying the first equation and
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situated in Quadrant I is a line which approaches without
bound the straight line y = z with increasing = and
for z=0, y=V & — b3. (As is known, the equation
i;’ — 22 = k describes an equilateral hyperbola.) Simi-
arly, the line described by the second equation ap-
proaches the straight line y = z/2 with increasing z and for
tending to zero y increases without bound. (The set of
points satisfying the second equation is also a hyperbola.)
Hence it follows that these two lines intersect, that is, the
system of equations always has a solution.

172. Denote the remaining two vertices of the tetra-
hedron by C and D. By the hypothesis, | AC| + | AD | =
| AB |. Consider the square XLMN with side equal to
| AB |. On its sides LM and M N take points P and Q such
that | PM | =|AD |, | QM| =|AC|. Then | LP | =
|AC|, |NQ|=|4D|, |PQ|=|DC| and, con-
sequently, A KLP =A ABC, A KNQ = A BAD,
A BDC = A KPQ. These equalities imply the statement
of the problem.

173. No, not any. For instance, if one of the plane
angles of the trihedral angle is sufficiently small and two
other are right angles, then it is easy to verify that no
section of this trihedral angle is a re triangle.

174. Show that if at least one plane angle of the
given trihedral angle is not equal to 90°, then it can be
cut by a plane so that the section thus obtained isan
obtuse triangle. And if all the plane angles of the trihed-
ral angle are right an%}es, then any of its sections is
an acute triangle. For this purpose, it suffices to express
the sides of an arbitrary section by the Pythagorean
theorem in terms of the line segments of the edges and
to check that the sum of the squares of any two sides of
the section is greater than the square of the third side.

175. Let a be the length of the greatest edge, b and ¢
the lengths of the edges adjacent to one of the end points
of the edge @, and e and f to the other.

Wehave:(b+c—a)+ (e+f—a)=b+c+ e+
f — 2a > 0. Hence it follows that at least one of the
following two inequalities is fulfilled: 6 ¢ — a >0
or e+ f— a>0. Hence, the triple of the line seg-
ments a, b, ¢ or a, ¢, f can form a triangle.

176. In any tetrahedron, there is a vertex for which the
sum of certain two plane angles is less than 180°. (Actu-
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ally, a stronger statement holds: there is a vertex at
which the sum of all plane angles does not exceed 180°.)
Lot the vertex 4 possess this property. On the edge ema-

AN
nating from A take points K, L, M such that A/LM =
/' /\ /\
KAL=oqa, ALK = LAM = B. 1t can be done if a +
B < 180°.
Thus,

A KAL=ALAM, A KLM = A KAM,

In the pyramid AKLM, the dihedral angle at the
edge AK equals the angle at the edge LM, the dihedral
angle at the edge A M equals the angle at the edge KL. It
is easy to make sure that the tetrahedron KZMA will be
brought into coincidence with itself if the edge KA is
brought into coincidence with ZM, and the edge A M with
KL.

177. Suppose that none of the plane an%les of the given
trihedral angle is equal to 90°. Let S be the vertex of the

Fig. 37

given angle. Let us translate the other trihedral angle so
that its vertex is brought into coincidence with a point 4
lying on a certain edge of the given angle (Fig. 37). 4B,
AC, and AD are parallel to the edges of the other dihedral
angle. The points B and C are found on the edges of the
given angle or on its extensions. But 4B is perpendicular
to SC, AC is perpendicular to SB, consequently, the pro-
jections of BS and CS on the plane ABC will be respec-
tively perpendicular to AC and 4 B, that is, S is projected
into the point of intersection of the altitudes of the trian-
gle ABC, hence, AS is perpendicular to BC. Thus, the
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edge AD is parallel to BC, and this means that all the
edges of the other trihedral angle belong to the same
plane. And if one of the plane angles of the given trihed-
ral angle is a right one, then the edges of the other
trihedral angle must lie in one face of the given angle
{in one that corresponds to the right £1ane angle). If exact-
y two plane angles of the given trihedral angle are right
angles, then two edges of ﬁle other trihedral angle must
coincide with one edge of the givem angle. Thus, the
other trihedral angle can be nondegenerate only if all the
plane angles of the given trihedral angle are right onmes.

178. The straight line I can be regarded as the diago-
nal of the rectangular parallelepiped; it makes angles c, B,

s S
R P A I
{ '/\*
=
| 4’/ —_————1
Fig. 38

and y with edges. Then, arranging three congruent paralle-
lepipeds in the way shown in Fig. 38, we obtain that
the angles between the three diagonals of these parallele-
pipeds emanating from a common vertex are equal to
2., 2P, 2y. Consequently, 2a -4 2f 4 2y << 2m.

179. Let S be the vertex of the angle, 4, B, and C
certain points on its edges. Let us prove that the angle
between any edge and the plane of the opposite face is
always less than either of the two plane angles including
thisedge. Since an angle between a straight line and a plane
cannot be obtuse, it suffices to consider the case when
the plane angles adjacent to the edge are acute.

Let A; be the projection of 4 on the face SBC, 4, the
projection of A on the edge SB, since | SA, |> | S4, |,

AN N\ AN
ASA, <L ASA, = ASB (remember that all the plane
angles at the vertex S are acute). From here readily fol-
lows the first part of our problem.
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7\ N\
Let us prove the second part. We have: ASB—BSA,<<
AS

N N 2N\ / )
ASA,;, ASC — CSA,<< ASA,, (at least one inequality
is strict). Adding together these inequalities, we get

AN N\ Z\ 7N\
ASB + ASC — ¢SB < 24 5A,.

Writing similar inequalities for each edge and adding
them, we obtain our statement. Taking a trihedral angle
all the plane angles of which are obtuse and their sum
is close to 2n, we make sure that in this case the state-
ment of the second part will not be true.

180. Let o and a,, p and B,, y and y, be dibedral
angles of the tetrahedron %he angles corresponding to
opposite edges are denoted by one and the same letter).
Consider four vectors a, b, ¢, and d perpendicular to the
faces of the tetrahedron, directed outwards with respect to
the tetrahedron, and having len%ths numerically equal
to the areas of the corresponding faces. The sum of these
vectors is equal to zero. (We can give the followin
interpretation of this statement. Consider the vesse
having the shape of our tetrahedron and filled with gas.
The force of pressure on each face represents a vector per-
pendicular to this face and with the length proportional
to its area. It is obvious that the sum of these vectors is
equal to zero.) The angle between any two vectors com-
plements to m the corresponding dihedral angle of the
tetrahedron. Applying these vectors to ome another in
a different order, we will obtain various three-dimen-
sional quadrilaterals. The angles of each quadrilateral
are equal to the corresponding dihedral angles of the
tetrahedron (two opposite angles are excluded). But the
sum of angles of a space quadrilateral is less than 2x.
Indeed, draw a diagonal of this quadrilateral to separate
it into two triangles. The sum of angles of these triangles
is equal to 2, whereas the sum of angles of the quadri-
lateral is less than the sum of angles of these triangles,
since in any trihedral angle a plane angle is less than the
sum of two others. Thus, we have proved that the fol-
lowin% t_}il_reéa i—nfquf‘iities ar2e fulﬁllﬁg: aial—_l-'- B+ ﬁlz<
2“, < ﬂ, Y 1 a CCI < .
(Thus, we have Yprov‘;ld the first paIYt of the problem.)
Adding these inequalities, we get o 4+ o, 4+ p + B, +
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¥ + v. < 3n. To complete our proof, let us note that
the sum of dihedral angles in any trihedral angle is
greater than m (see Problem 165).

Adding up the inequalities corresponding to each ver-
tex of the tetrahedron, we complete the proof.

Remark. In solving this problem, we have used the
method consisting in that instead of the given trihedral
angle, we have considered another trihedral angle whose
edges are perpendicular to the edges of the given angle.
The pair of trihedral angles thus obtained possesses the
following groperty: the plane angles of one of them com-
plement the dihedral angles of the other to m. Such
angles are said to be complementary or polar. This method
is widely used in spherical geometry. It was also used
for solving Problem 165.

181. The statement of the problem follows from the
fact that for a regular polygon the sum of the distances
from an arbitrary point inside it to its sides is a constant.

182. If S,, Sa, Ss, and S, denote the areas of the cor-
responding faces of the tetrahedron, V its volume, then

%1 %3 | T zy __S124 SaZy SeZy S4a:!_
B T T TR TS T Sak  Sghs T Sehy
_Slx1+ngz—|—Ssx3—|—Sﬂ=1
- 3V ' *

183. Let M and K denote the midpoint of the edges
AB and DC of the tetrahedron ABCD. The plane passing
throu‘fh M and K cuts the edges AD and BC at points
L and N (Fig. 39, a). Since the plane DMC divides the
volume of the tetrahedron into two equal parts, it suf-
fices to prove that the pyramids DLKM and KCMN are
equivalent. The ratio of the volume of the pyramid
KCMN to the volume of the entire tetrahedron ABCD

is equal to -—2— LI%%TL .

Analogously, for the pyramid

DLKM this ratio is equal to 11DL) . Hence, we
§ 1DA|

have to prove the equality:

|DL| | CN|

|DA| " |CB|°
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Let us project our tetrahedron on the plane perpendic-
ular to the line XM. The tetrahedron ABCD will be
projected in a parallelogram with diagonals AB and CD
(Fig. 89, b). The line LN will pass through the point of
intersection of its diagonals, consequently, our statement
is true.

(4)
Fig. 39

184. Let for the sake of definiteness | DA | << | DB |
| DC |, and at least one of the inequalities is strict. Let
us superpose the triangles DAB, DBC, and DCA so as to
})ring 41;8 a coincidence equal angles and equal sides
Fig. 40).

%n the figure, the vertices of the second triangle have
the subscript 1, those of the third triangle the subscript 2.
But |D,A,| = | DA | < |D,C,| (by the hypothesis).

N N\
Consequently, D,D,B is acute and BD,D is obtuse and
| DB | > | D,C; | which is just a contradiotion.

185. Througlh each edge of the tetrahedron pass a
plane parallel to the opposite edge. Three pairs of planes
thus obtained form a parallelepiped. ngosite edges of the
tetrahedron will serve as diagonals of a pair of opposite
faces of the parallelepiped. Let, for instance, a and
denote the diagonals of two opposite faces of the parallele-
piped, m and n their sides (m > n). Then a,a; cos o =
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m?® — n®. Writing such equalities for each pair of oppo-
site edges, we will prove our statement.

186. Lot the sphere pass through the vertices A, B,
and C and intersect the edges DA, DB, and DC at points

MY &
N 9 %\S)
‘-
\Z
&
Y
Fig. 40
K, L, and M. From the similarity of the triangles DKL
and 4BD, wo find: | LK | =| 4B | -5l and from the

similari:;y ofI the triangles DML and DBC: | ML | =
DL

ZSABC‘ .
Now, it is easy to make sure that | LK | = | ML |.

Remark. The statement of our problem will be true
for any tetrahedron in which the products of opposite
edges are equal.

187. The fact that the points X, L, P, and N belong
to the same plane (coplanarity) implies that

Vmrrp + Vupng = Vmnkr + Vmren- (1)
From Problem 9 it follows that
VMELp= | ME |-\ M1 1| MP | VMapc
| MA|-| MB || MC | !
VMpng= | MP || MV || MK | VMabpc
| MC |-\ MD|-| MA | !

v —IMN|-|ML|-| MK |
MNLK |MD|'|MA|'|MB| MABD:
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v _ ML)\ |MP|.|MN | v
MLPN IMBI'|MCI‘I IMDI MBCD-

Substituting these expressions for the corresponding
quantities in (1), dividing by | MK || ML | - |MP] X
| MN|, multiplying by | MA |.| MB|-| MC| - |MD |,
expressing the volume of each of the remaining pyramids
in terms of the area of the base and altitude h, we will
get after the reduction by hr/3 the statement of our
problem.

188. Prove that the straight line passing through the
given point parallel to a diagonal of the cube will touch
each ball.

189. Both items follow from the following general
statement: if the sum ¢ | AM |+ B | BN |+ v ]| CL]|,
where o, B, y are given coefficients, is constant, then the
plane MNL passes through the fixed point. This state-
ment, in turn, follows from the equality

a|AM|+B|BN|=(a+p)| PQI,
where P is a point on AB, Q on MN,

|A4P)|  1MQ| B
|PB| |QN| o

190. If in the tetrahedron A BCD the equality | AB |4
|CD|=|BC)|+ | DA is fulfilled, then, the same as
it is done in the two-dimensional case, it is possible to
prove that there is a ball touching the edges AB, BC, CD,
DA, all the points of tangency being inside the line seg-
ments AB, BC, CD, and DA. If through the centre of the
ball and some edge a plane is passed, then each of the
dihedral angles under consideration will be divided
into two parts, and for each part of any dihedral angle
there is a part of the neighbouring angle which turns out
to be equal to it. For instance, the angle between the planes
OAB and ABC is equal to the angle between the
planes OBC and ABC.

191. Let R denote the point of intersection of OM
with the plane KLN (Fig. 41). The assertion that R is the
centre of gravity (centroid) of the triangle KLN is equi-
valent to the assertion that the volumes of the tetrahed-
rons MKLO, MLNO, and MNKO are equal. Denote

11-0449
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by z, y, z the distances from M to the corresponding
sides of the tria::lgle ABC. Since the plane KL M is perpen-
dicular to the e ge AD, the distance from O to KLM is
equal to the projection of OM on AD which is equal to
the projection of MP on AD, where P is the foot of the

Y/

Fig. 41

perpendicular dropped from M on BC. It is easily seen
that the projection of M P on AD equals —z—g , where g is

the distance from M to BC. If o is a dihedral angle be-
tween the faces of the tetrahedron ABCD, then

1 . 2
VKLM0=—6-‘ | KM |-| ML |sina - l;'g:xyzzg/-z .

Each of the two other tetrahedrons MLNO and MNKQ
will have the same volume.

192. Project the tetrahedron on the plane passing
through N perpendicular to CN. Let 4,, B,, D,, K,, an
M, denote the projections of the points A1 y By D, k’ ,and M,
The distance between BK and CN will be equal to the
distance from the point N to B,K,, just in the same way,
the distance between AM and CN is equal to the dis-
tance from N to A, M,. But A,D,B, is an isosceles tri-
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angle. The line A, M, passes through K, (K, is the point
of intersection of the medians). And since the triangle
Al(liflgllés also isosceles, N is usually distant from A,K,
and B,K,.

193. l{et A denote a vertex of the base of the pyra-
mid, B a point in the plane of a lateral face, | AB | = a,
B, the projection of B on a side of the base, B, the pro-
jection of B on the plane of the base, B; the projection

Fig. 42

of B, on the edge of the base adjacent to AB,, B, the
projection of B, on the lateral face adjacent to the face
containing AB (Fig. 42). If now « is a dihedral angle at

7\
the base of the pyramid, BAB, = ¢, then
| BBy | =| AB; | =aoces @,
| ABy | =| BBy |=| B,B | cesac=asin pcesa,
|BgBy | = BgB, | cosaa=a ces @ cos ,
and, finally,
| AB, | =V | 4B, |2+ | B,B, |?

=g }/ 8in? ¢ cos? & |- ces? ¢ cos? & = a cos .

Hence it follows that the length of any line segment
lying in the plane of a lateral face after a twofold pro-
;;ction indicated in the conditions of the problem will

multiplied by cos a (with the aid of translation we
bring one of the end points of the given line segment into
the vertex A). Comsequently, in such projecting any

11
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figure will go into the figure similar to it with the ratio
of similitude equal to cos c.

194, The statement of the problem follows from the
equalities

Vaaiee = Vaaypie = Vaagsioy

and similar equalities for the volumes of the pyramids
AA,CD and AA,DB.

195. Let M denote the point of intersection of the
straight lines CB, and C,B. The vertex A lies on DM.

8,

Fig. 43

Through the &ints D, D,, and A pass a plane. Denote
by K and L the points of its intersection with C,B, and
CB, and by A, the point of intersection of the line A4,
with DK (Fig. 43). From the fact that CC,B,B is a trap-
ezoid and KL passes through the point of intersection
of its diagonals it follows that | KM | = | ML |. Further,
considering the trapezoid D,KLD, we will prove that

| A4, | = -"2- | AA, |. Consequently,

|
Vapen= -3 V4,BcD:

But it follows from the preceding problem that
Vagsep= Va(Bicip,- Thus, the ratio of the volumes of

the pyramids A,B,C,D, and ABCD is equal to 3.
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196. Introduce the following notation: ABCD is the
given tetrahedron |BC| =4, |CA| =10, | AB| =,
|DA|=m, | DB | =n,| DC| = p. Let then G denote
the centre of gravity of the triangle ABC, N the point
of intersection of the straight line DM with the circum-
scribed sphere, and K the point of intersection of the

4

Fig. 44

straight line AG with the circle circumscribed about the
triangle ABC ‘Fig. 44). Let us take advantage of the
following equality which is readily proved:

| 4G || GK | = 5~ (@*+ b+,
Then
| DG -1 6N | =1 4G || GK | =~ (@354,

consequently,

__a?}-b2|-c?
|GN | =——;—
where

t=|DG| =5 VIR TI I —d—0— ()
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(szee ’Progblem \ 51),’ |2DN| = |DG|4|GN | = t+
a4 +;t+c = +gt +p . The assertion that OM is
perpendicular to DM, is equivalent to the assertion that
|DN | =2|DM | =2- = |DG| = 1, that is,
mﬂ—l-g:-[-p z: g t, whence replacing ¢ by its expres-
sion (1), we get

a4 b2 4 ¢ = m? | n2 4 pl. (2

If A,, B, C, are the centres of gravity of the respective
faces DBC, DCA, and DAB, then in the tetrahedron
A,B.C,D we will have

b
|BiCy | =5, |Cidyi=—5, | 4By 1=+,
2 2 2
|DA1|=="§“ma' |DBll=-§"nb' |D01|=*"§-Pm

where mg, np, and p, are the respective medians to the
sides BC, CA, and AB in the triangles DBC, DCA, and
DAB. If now t, is the distance from the vertex D to the
point M, then, since M, by the hy%gthesis, lies on the
surface of the sphere circumscribed about the tetrahedron
A,B,C,D and the line DM passes through the centre of
gravity of the triangle 4,B,C,, to determine the quantity
| DM | we may take advantage of the formula obtained
above for | DN |, that is,

4m? - 4ng - 4b2

| DM | =—E—

where

=V EmiF R - —o—2,

Taking advantage of the formula for the length of the
median of a triangle, we get

4m2-4n34- 4p3— q® — b2— 2
27ty !

| DM | =
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where

b=V IR T TP B i= 1.

On the other hand, | DM | = -43- t, that is,

4dm24-4n?4-4p2—a?—b2—c2 3

157 =75 &

Replacing ¢ by its expression (Formula (1)), we get (2)
which was required to be proved.

197. Fix some axis of symmetry I. Then, if I’ is also
an axis of symmetry and I’ does not intersect with I or
intersect ! but not at right angles, then the line I”, which
is symmetric to I’ with respect to ! is also an axis of
symmetry. This is obvious. And if some line 1, is an axis
of symmetry and intersects with, and is perpendicular
to, I, then the line I, passing through the point of inter-
section of I and !, and perpendicular to them will also be
an axis of symmetry. It is possible to verify it, for ins-
tance, in the following way. Let us take the lines 1, [,, and
l, for the coordinate axes.

Applying, in succession, to the point M (z, y, 2)
symmetry transformations with respect to the lines !
and Il,, we will bring the point M first to the position
M, (z, —y, —z2), and then M, to M, (—z, —y, 2). Thus,
a successive application of symmetry transformations with
resiect to the lines ! and I, is equivalent to symmetry
with respect to l,.

Qur reasoning implies that all axes of symmetry,
except for I, can be divided in pairs, that is, the number
of symmetry axes is necessarily odd if it is finite.

198. Let M denote the projection of B on AD. Obvi-
ously, M belongs to the ace of the sphere with diame-
ter AB. On the other hand, we can show that | AM | X
| AD | = | AB |2 Hence it follows that all points M must
belong to a certain spherical surface containing the given
circle. Hence, points M belong to one circle along which
these two spherical surfaces intersect.

199. Prove that the projections of the point M on the
sides of the quadrilatera‘i ABCD lie on one and the same
circle (if K and L are projections of M on AB and BC,
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then the points B, X, M, and L lie in one circle, and,

N N N N
hence, MLK = MBK, MKL = MBL. The same for
other sides).

Then take advantage of the result of Problem 198.

200. Since the centre of gravity lies on the lines
ioining the midﬂoints of the edges AB and CD, it will
ollow from the hypothesis that this line will be perpen-
dicular to the edges AB and CD.

201, Let K ang M denote the midpoints of the edges
AB and €D. 1t follows from the hypothesis that the line
KM passes through the point 0 which is the centre of
the inscribed sphere; O is equidistant from the faces ACD
and BCD. Consequently, the point X is also equidistant
from these faces. Ilence it follows that these faces are
equivalent. In the same way, the faces ABC and ABD
turn out to be equivalent. If we now project the tetrahed-
ron on the plane parallel to the edges AB and CD, then its
projection will be a parallelogram with diagonals AB
and CD. Hence there follows the statement of our
problem.

202. Rotate the cube through some angle about the
diagonal AC,. Since the Xlane of the triangle 4,BD is
ge endicular to AC,; and its sides are tangent to the

all inscribed in the cube, the sides of the triangle ob-
tained from A4,BD after the rotation will also touch the
inscribed ball. With the angle of rotation appropriately
chosen, the face 44,B,B will go into the given plane,
and the line segment MN will be a line segment of the
rotated face.

203. Denote by «, B, y the angles formed by rectan-

lar faces with the fourth face. If S;, S,, S,, S, are

the respective areas of the faces, then S, = S, cos a, S,=
S¢ cos P, Sg = S, cos y. After this, we may take advan-
tage of the fact that cos®a--cos? B4-cos?y = 1. This
follows, for example, from the fact that the angles made
by the altitude dropped on the fourth face with the lat-
eral edges of the pyramid are also equal to «, B, and y
(see Problem 10).

204. Take a straight line dperpendicular to the given
lane and denote by «, §, and y the angles made by this
ine with the edges of the cube. The projections of the

edges on the plane take on the values sin ¢, sin B, sin y.
And since cos? o 4 cos? f <+ cos?y=1, the sum of the
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squares of the projections will be equal to
4a? (sin? ¢ - sin? B - sin? y) = 8a2,

where a is the edge of the cube.

205. Through each edge of the tetrahedron pass a plane
parallel to the opposite edge. We will obtain a cube
with a tetrahedron inscribed in it. If the edge of the
tetrahedron is b, then the edge of the cube will be equal

to b/} 2. The projection of each face of the cube is a paral-
lelogram whose diagonals are equal to the projections of
the edges of the tetrahedron. The sum of the squares of
all diagonals is equal to the doubled sum of the squares
of the projections of the edges of the tetrahedron and is
equal to twice the sum of the squares of the projections of
the edges of the cube.

Taking advantage of the result of the preceding prob-
lem, we get that the sum of the squares of the projections
of the edges of a regular tetrahedron on an arbitrary

2
plane is equal to 8 %— = 4p2.

206. Consider first the case when the given straight
lines are skew lines. Denote by A and B the positions of
the points at some instant of time, % is the ratio of their
velocities (the velocity of the body situated at the point
A is k times the velocity of the other body). M and N are
two points on the line AB such that | AM |:| MB | =
| AN|: | NB|j=Fk (M is on the line segment AB),
O is the midpoint of MN. The proof of the statement of
our problem is divided into the following items:

(1) The points M, N, and O move in straight lines,
the straight lines in which the points A, B, M, N, and O
move are parallel to one plane.

(2) The lines in which the points M and N move are
mutually perpendicular.

(3) If two straight lines are mutually perpendicular
and represent skew lines, then any sphere constructed on
the line segment whose end points lie on these lines, as
on the diameter, passes through the points P and (Q,
where PQ is a common perpendicular to these lines
(P and @ are situated on the straight lines).

(4) The locus of goints L such that | AL|:| LB | =
k is the surface of the sphere constructed on MN, as on
the diameter.
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From the statements (1) to (4) it follows that the circle
whose existence is asserted in the problem is the circle
obtained by rotating the point P (or Q) about a straight
line in which the point O moves, where P and Q are the
end points of the common perpendicular to the straight
lines in which the points M and N are displaced.

Items (1) and (2) can be proved, for instance, in the
following way. Let 4, and B, denote the positions of the
points at a certain fixed instant of time. Let us project
our points parallel to the straight line 4,B, on a plane
parallel to the given lines. The points 4, and B, will be
proJected into one point C, and the points 4, B, M, N,
and O will be projected into the respective points 4’, B’,
M’, N’, and O’. Then the points M’ and N’ will repre-
sent the end points of the bisectors of the interior and the
exterior angle C of the triangle A’'B’C’. Hence, M’, N’,

N
and O’ move in straight lines, and M'CN’ = 90°. Hence
it follows that the points M, N, and O also displace in
straight lines, since it is obvious that each of these points
lies in the fixed plane parallel to the given lines. Item (3)
is obvious. Item (4) follows from the corresponding state-
ment of plane geometry.

In the case when the points 4 and B move in two inter-
secting lines, the relevant reasoning is somewhat changed.
The problem is reduced to the proof that in the pf:ne
containing the given lines there are two fixed points P
and Q such that | AP |: | PB|=|4Q|:|QB| = k.

207. Let O denote the centre of the ball, r its radius,
AP and BQ the tangents to the ball (P and Q being the
Foints of tangency), M the point of intersection of the
ines AP and BQ. Setting |04 | =4a, |0OB| =,
| PM| = | QM| = z. Then | OM |2=r21-22, | AM |2=
(V@ =+ | BM = (V=1 + a2

If the signs are of the same sense, then the following
relationship is fulfilled:

Vi—=ri| AM |2—V a*—r% | BM |?

+(V @—r=y 5#—r) | oM |*=1,. ()
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If the signs are opposite, then

VE—r2| AM |24V a®—r® |BM |8
—(Va@—r2 1+ V%) | OM 2=1,, (9

where I, and I, are constants depending on r, a, and b.

Since the sum of the coefficients of | AM |2, | BM |2
and | OM |2 in Equations (1) and (2) is equal to zero,
the locus of d)oints M for which one of these relation-
ships is fulfilled is a plane. In both cases this plane is
perpendicular to the plane OAB.

208. Lot ABC be the given triangle whose sides, as
usually, are equal to a, b, and ¢. The radii of the three
balls touching one another and the plane of the triangle
be ca

222’
%g . Denote by z the radius of the ball touching the three

given balls and the plane of the triangle, M is the point
of tangency of this ball and the plane. We have:

at points 4, B, and C are respectively equal to

bex _ ]/aca:
1MA|=2|/—2a, | MB|=2)/ &,
abx
|Mc|=2]/2—c.

Consequently, | MA |: | MB| = b:a,| MB | : |MC| =
c:bor | MA|:|MB|:|MC|=bc: ac: ab.

For any irregular triangle there are exactly two points
M, and M, for which this relationship is fulfilled. Here
we take advantage of Bretschneider’s theorem. Let ABCD
be an arbitrary plane quadrilateral. Let AB = @, BC =
b,CD = c,and DA = d, AC = m and BD = n. The sum

of the angles 4 + C = ¢@. Then the equality m2n? =
a?c? -+ b2d® — 2abed cos ¢ holds. We then obtain that

if A =« is the smallest angle of the triangle, then the
77N N
angles BM,C and BM,C are squal to 60* + e« and 60°-—«.
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7N\ .
Let BM,C = 60° 4 a. Write for the triangle BM,C
the theorem of cosines, denoting the radius of the ball
touching the plane at point M, by r (z = r),

ar= 20T L z‘f" — 4ar cos (60° 1 o)

b
1 . fc, b  2c08(60°+a)
== Grao——0 ). @

Analogously, designating the radius of the ball touching
the plane at point M, by p, we get

1 c b 2 cos (60°—a
T=2 (_a'f)- ac (a ) ) °
Subtracting (2) from (1), we obtain

1 1 _ 4[cos (60°—a)—cos (60°+a)

r p a

8sin 60°sine 23
a - R

(2)

which was required to be proved.
209. Let M denote the midpoint of 4B, O, and O,
the centres of the balls, R, and R, their radii, then

IAEI”)

| M0, 13— MO, 2= (m+L22L) — (R4
= R}—R2.

This means that the midpoints of all the line segments of
common tangents to the given balls lie in one and the
same plane which is perpendicular to the line segment
0,04. Hence follows the truth of the statement of our
problem.

210. Such peatagon does not exist.

211. Let A,AqA 94,45 be the given pentagon. It fol-
lows from the hypothesis that all the diagonals of the pen-
tagon are equal to one another. Choose three vertices of
the pentagon so that the remaining two vertices lie on
one side of the plame determined by the three chosen
vertices, say, 4,, A, and 4;. Then the vertices 4, and 4,
will be symmetric to each other with respect to the plane
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assing through the midpoint of 4,4, perpendicular to
i,A :gThis follows from the fact that the trian?e Axdsds

is isosceles, | 4,45 | = |A3d5 |, 4, and A, lie on one
side of the plane A,Azdy and | 4;4,]| = |44, 1,
| A1ds | = | A4, and | 4,45 = | 4,4, ]. Hence,

the points 4, 4 ,, A 4, and 4, lie in one plane. The further
reasgnin is' clear. The case‘S when the sought-for plane
passes through other vertices are considered in a similar
way.

y212. Let M denote the point of intersection of the
diagonal AC; and the plane A4,BD. Then M is the point

Fig. 45

of intersection of the medians of the triangle 4,BD (so-
called median point) and, besides, M divides the diago-

nal AC, in the ratio 1:2, that is | AM | = % d.

Consider the pyramid ABA,D (Fig. 45). On the line
BM take a point K such that | MK | = | BM |, and con-
struct the prism MKDANP. You can easily notice that
the distances between the lateral edges of this prism are
equal to the respective distances from the points 4,, B,
and D to A M. Consequently, the sides of the section per-
pendicular to the lateral edges of the prism MKDANP
are equal to these distances. Further, the volume of the
pyramid ABA,D is equal to the volume of the constructed
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prism and amounts to one sixth the volume of the paral-
lelepiped, i.e.—é— V= —13-dS, V = 2dS.

213. Let M denote the centre of gravity of the tetra-
hedron A BCD. The volume of the pyramid MABC is one
fourth the volume of the given tetrahedron. Complete the
pyramid MABC to get a parallelepiped so that the line
segments MA, MB, M(C are its edges. Figure 46 repre-

Fig. 46

sents this parallelepiped separately. It is obvious that
the edges MC, CK, KL and diagonal ML of this parallel-
epiped are respectively equal and parallel to MC, MA,
MB, and MD. But the volumes of the pyramids MABC
and MCKL are equal to each other, that is, each of them

is equal to ! Vapcp- Consequently, the volume of the tet-

4
2

rahedron in question equals(g) % Vagep = %g V.

214. When solving Problem 180, we proved that the
sum of the vectors, perpendicular to the faces of the
tetrahedron, directed towards outer side with respect to
the tetrahedron, and whose lengths are numerically equal
to the area of the corresponding faces, is equal to zero.
Hence follows the existence of the tetrahedron KLMN.

In finding the volume of the tetrahedron, we shall
take advantage of the following formula:

V= “(15—“5" sin ¢ sin P sin C,
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where a, b, and ¢ denote the respective lengths of the
edges emanating from a certain vertex of the tetrahedron,
a and f two plane angles at this vertex, and C the dihed-
ral angle between the planes of the faces correSf)onding to
the angles & and . If now «, B, and y are all plane aniles
at this vertex and A4, B, and C are Iihedral angles, then

3
Vs = (.%_) a3b3¢3 sin? o sin? B sin? y sin 4 sin Bsin C. (1)

Take now a point inside the tetrahedron, and from it
drop perpendiculars on the three faces of the tetrahedron
corresponding to the trihedral angle under consideration,
and on each of them lay off line segments whose lengths
are numerically equal to the areas of these faces. Obvious-
ly, the volume of the tetrahedron formed by these line
segments is equal to that of the tetrahedron KLMN.
The plane angles at the vertex of the trihedral angle
formed by these line segments are equal to 180° — 4,
180°— B, 180°—C, and the dihedral angles to 180° —
a, 180°—B, 180° —y. Consequently, making use of Equal-
ity (1), we get for the volume W of this tetrahedron

3
W3 = (%) S$3.S5353 sin? A sin? B sin® C sin a sin fsiny, (2)

where S;, S5, S3 are the areas of the faces formed by the
edges a, b, and ¢, respectively, that is, Sl=% ab sin vy,

Sy = -1260: sin ¢, S3= %casin B.
Replacing S;, Sa, S; in (2), we get

3 9
W= (%) (%) a®b%ct sint o sin4 P sin? y sin® 4 sin® B
X sin? C, (3)
Comparing Equations (1) and (3), we obtain
3
W = —4' VS.

215. The statement of the problem follows from the
fact that the products of the line segments into which each
of these chords is divided by the point of intersection
are equal.
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217. The statement of our problem follows from the
following fact of plane geometry. If through a point P
lying outside of the given circle two straight lines are

rawn intersecting the circle at the respective points 4
and 4,, B and B,, then the line 4,B, is parallel to the
circle circumscribed about PAB passed through the
point P.

Thus, the set of points under consideration will be-
long to the plane parallel to the plane which touches (at
the point P) the sphere passing through the given circle
and point P.

218. The equation

(z—a+ (y— )=k (z—0?

describes a conical surface whose vertex is found at the
point S (a, b, c), the axis is parallel to the z-axis, k =
tan o, where o is the angle between the axis of the
cone and its generatrix. Subtracting from each other
the equations of two conical surfaces with axes parallel
to the z-axis, equal parameters k, but different vertices,
we get a linear dependence relating z, y, and z.

219. Denote by F the point of intersection of the
lines KL and MN and by E the point of intersection
of the line PF and the sphere passing through the points
P, 4, B, and C (supposing that P does not lie in the plane
of the face ABC().

The points P, Q, R, and E belong to one circle repre-
senting the section of the sphere passing through the
points P, A, B, and C by the plane passing through the
points P, K, and L. But since F is the point of inter-
section of the lines XL and MN, the points P, S, T, and
E must belong to the circle which is the section of the
sphere passing through the points P, 4, C, and D by the
plane determined by the points P, M, and N. Conse-
quently, the points P, @, R, S, and T lie on two circles
having two common points P and E, and such two cir-
cles belong to one sphere.

Remark. We have considered the case of the genmeral
position of the given points. To get a complete solution
we have to consider several particular cases, say, P lies
in l;;he plane of the face, KL and MN are parallel lines,
and so on.
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220. Let the edges S4, SB, SC, and SD of a quadri-
hedral angle be elements of a cone whose axis is SO. Then
in the trihedral angle formed by the lines SO, SB, and
SC, the dihedral angles with the edges SA and SB are
equal. Considering three other such angles, we get easily
that the sums of opposite dihedral angles of the given
quadribhedral angle are equal.

Conversely. Let the sums of opﬁosite dihedral angles
be equal. Consider the cone with the lines S4, SB, and
SC as its elements. Suppose that SD is not an element.
Denote by SD, the straight line along which the surface
of the cone and the plane ASD intersect. We will obtain
two quadribedral angles SABCD and SABCD, in each
of which the sums of opposite dihedral angles are equal.
This will imply that in the trihedral angle which is
complementary to the angle SCDD, (see the solution of
Problems 165 and 166) one plane an%Ie is equal to the
sum of two others which is impossible,

221. Let all the vertices of the hexahedron
ABCDEFKL, except for C, lie on the surface of the

L
3 !\
\ \
N I S ff
- =\
/_.___\ g
A _/ ARSI
/ b
8
Fig. 47

s¥h_ere with centre O (Fig. 47). Denote by C; the point
0 hmtersection of the line KC with the surface of the
sphere.

For the sake of brevity we shall symbolize by 4 FEL
the dihedral angle between the planes FEQ and FLO
(the remaining dihedral angles are denoted in a similar

12—-0449
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way). Using the direct statement of Problem 220, we
may write:

X FEL + X FKL = X EFK + X ELK,
X AEF + X ABF = X EAB + X EFB,
X AEL + X ADL = X ELD + X EAD,
X FKC, + X FBC, = X KFB + X KC,B,
X LKC, + X LDC, = X KLD + X KC,D.

Adding together all these equalities and taking into
consideration that the sum of any three dihedral angles
having a common edge (say, OF) is equal to 2x, we get

X ABC, + XADCy= X BAD + X B(C,D,

and this means (see the converse statement of Problem 220)
that the edges 04, OB, 0C,, and OD are elements of one
cone. Hence it follows that ¢, lies in the plane ABD,
that is, C, coincides with C.

The case when O is situated outside the polyhedron
requires a separate consideration.

222. Let ABCD be the given tetrahedron, K, L, M,
N, P, and Q the given points on the respective edges
4B, AC, AD, BC, CD, and DB. Denote by D, the point
of intersection of the circles passing through X, B, N
and C, L, N. It is not difficult to prove that the point D,
belongs to the circle passing through the points 4, X,
and E Analogously, we determine the points 4,, B,
and C, in the planes BCD, ACD, and ADB. Let, finally,
F be the point of intersection of the three spheres circum-
scribed about the tetrahedrons KBNQ, LCNP, and
NDPQ. Take advantage of the result of Problem 221.
In the polyhedron with vertices B, N, 4,, Q, K, Dy, F, C,
all the vertices lie on the surface of the sphere, five faces
BKD,N, BKC,Q, BNA,Q, D,NA,F, A,QC,F are plane
quadrilaterals, consequently, KD.FC, is also a plane
quadrilateral. In the same manner, prove that LD,FB,
and MB,FC; are also plane quadrilaterals.

And, ﬁna’lly, in the hexahedron A KD,LMB.FC, seven
vertices 4, X, D, L, M, B,, C, lie on the surface of the
sphere passinf fh.rough A, K, L, and M, hence, the
point F also lies on the same sphere.
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Section 3

224. Let S be the vertex of the angle. Cut the angle
by a plane so as to form a pyramid SABCD in which
ABCD is the base and the opposite lateral edges are equal:

|S4A|=|S8C)|, |SB|=|S8D|.

(Prove that this can be done always.) Since the plane

angles at vertices are equal, ABCD is a rhombus. Let

O be the point of intersection of AC and BD.Set | AC | =

2x,/| BD | = 2y, | SO | = z and suppose that z < y.
\

N\
If ASC and BSD are acute, then z > y, and this means
that in the triangle ASB |AB| < |AS| < l/I\?S l,

Z\

that is, A SB is the smallest angle of this triangle, A SB <
60°.

The supposition that both angles are obtuse is con-
sidered in the same manner.

225. From Sh to -;- Sh.

226. The greatest volume is Eossessed by the tetra-
hedron two opposite edges of which are mutually per-
pendicular and are the diameters of the bases. Its volume

is equal to —g— R3p.

227. Lot |AB|=|BC|=1, |44,| ==

1 V2 1

—_——— .
6

Vb, B, =3 SpBD,* 2

On the other hand,

1 .
Vpp,se,=3 Spac, | D1B | sin@

=-'—/-€?: . ]/—;--1-::2- V 24 2%sin @,
where ¢ is the angle between D;B and the plane DBC;.

Thus, . 0
&
ersainy s = ta oY

singp=

12
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whence it follows that the greatest value of ¢ will be

arcsinT,'-.
228, Let the altitude of the prism be equal to 1,
| AM | = z. Circumscribe a circle about the triangle

| A;MC, |. Consider the solid obtained by revolving t
arc A, MC, of this circle about the chord A,C,. The angle
A MC, will be the greatest if the line AB touches
surface of the solid thus gonerated. The latter happens
if the lines MO and A B, where O is the centre of the circle
circumscribed about the triangle ABC, are mutually
perpendizular; hence, the line MO divides 4,C, in the
. |AM| =
ratio TME | 2—z

On the other hand, it is possible to show that MO

| A, M | cos 4,C1 M

Ex-

divides A4,C, in the ratio

N\
| CIM | cos ClAlM
pressing the sides and cosines of the angles of the
triangle A,MC, in terms of z, we get the equation

A+t (b—2) = =
z(9—4z+§-‘)_—'§:-? <> 3’-}-33-*—4—0,

whence z=14. The greatest value of the angle 4,MC,
equals—g'—,

229, The lines AE and CF are mutually perpendicu-
lar. Let Q, be the projection of Q on the plane ABB,A,.
Qfl lies on the line ent BL, where L is the midpoint
o

AA,. Let N be the point of intersection of AE and

LB. 1t is easy to find that | AN |——. Setting

Vs
IAPI=—1—+x, | NQ,| =y, we get |PM|2=

V5
8 4 . \2 _ | PM |
'g"l‘('v-—s-i-x) ’ IPQI’—x’+y’+1.WT§' attains

the greatest value for y=0. It remains to find the
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g 2

greatest value of the fraction 9/ 5+(i/21_/l-_51)x—|-x .
This value is attained for x=—-1—_-.
V5

Answer: V2.

230. Consider the triangle KLM representing the
projection of the given triangle on the plane ABCD,
K lying on the line CB, Lon CD, M on CA. If |CK| =

z, then | CL |=|a—z |, |CM|=1/§|a_-“12‘-

It is rather easy to get that

*

SkLm =-5-|Z(e—z)—a (“_'“;‘) I
=—%—(2x’—3ax+2a’).
. Ta?
The least value is equal to 5 -

231. Let z denote the altitude of the parallelepiped.
Consider the section of the pyramid by the plane passing
at a distance x from its base. The section represents
a square with side (1 — z); a rectangle of area s which
is a face of the parallelepiped is inscribed in the square.
Two cases are possible:

(1) The base of the parallelepiped is a square with
side }/'s. The diagonal of the parallelepiped d =

V 2% - 25, and

(1—z) Kzgg Vis<(1—a)

or

1—Vi<z<1—V s

Thus, in this case if s<<—, 1—2V % + ds<d?<

2

- i -
1—2 V3+3$, and if s>";—, F22s<<d?<1—2 Vs-l—&s
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2) The sides of the face of the parallelepiped inscribed
in the section are parallel to the diagonals of the section.
Let us denote them by y and z. OQur problem consists in
investigating the change of the function d2 = 22 +
y® -+ 2% under the conditions

Yyz=s,
{ y+s=1—2) V2.

(The latter system is consistent if 41—z > V25, 0<<z <

14—V 2s.) We have

=224 (yt+22—2yz=224+21 —x)2—2s
=322 — 4xr 4+ 2 — 2s.

If ss.;_-:—s , then the least value of d? is attained for

z=—§— , and if s>-1—18— , then for x=1—-1/§. Besides,

d3<<2—2s. Combining the results of items (1) and (2),
we get the answer.

Answer: if 0<s\<._-1—g-, then

‘/—g-—zsgd<1/2—-zs;

+2V6 AL , then

e 1

Vi—2Vatés<d <V 2I—2s

.. 74+2V°6 1
1f——+—25—]{--..<.~s<—‘,{:—, then

Vi—2Vastas<d<V1—2Vs+3s
it -—;-gs<1,'then

Va<igsVi—2Vit3
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232. Cut the polyhedron ABCA MNC, by the plane
assing at a distance i from the plane 4,B,C; and pro-
ject the section thus obtained on the pllane A.B.C,
(Fig. 48). In the figure, the projection of this section is

Fig. 48

shown in dashed line. It is obvious that the circle of the
base of the cylinder must be located inside the trapezoid
KLNC, (K, L are the respective points of intersection
of A,C; and MN with the projection of this section{. If
h = 3, then the section plane coincides with the plane
ABC and the points K and L with the midpoints of the

sides B,C; and A1C’;1- If h<3, |ML| = |4K|=
h

We can readily verify that for h << 3 the radius
of the greatest circle contained in the trapezoid KLNC,
is equal to K;, and for h>%this radius is equal
to the radius of the circle inscribed in a regular triangle

with side | KC |=2——h—, that is, it is equal to

_ 3
(%,

-
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Answer: (a) if 0< k< %- V=-{?’€nh'; if §<hg3,
n h \2
V=-5h (2—“3") ;

(b) the greatest value of the volume will be obtained
8n
for h=2, V= 77- .

233. If the plane passed through our line segment
parallel to the face ABB,A, cuts CB at the point K so
that | CK | = z, then the projection of the line segment
on the face ABC has a length z, and its projection on the
edge CC, is equal to | a — 2z |; thus, the length of the
line segment will be equal to

V atd(a—2z)2 =V 52> —4az -+ a.
The minimal length is equal to _(i-g )

234. The following statement is an analogue of our
problem in the plane. Given an angle and a point N
inside it. Consider all possible triangles formed by the
sides of the angle and straight line passing through the
point N, Among such triangles, the smallest area is
possessed by the one for which the side passing through ¥
is bisected by the point N,

Let us return to our problem, Let M be the given point
inside the trihedral angle. The plane passing through
the point M intersects the edges of the trihedral angle
at points A, B, and C. Let the line AM intersect BC
at N. Then, if the passed plane cuts off a tetrahedron of
the least volume, t%e point N must be the midpoint of
BC. Otherwise, rotating the plane about the line AN,
we will be able to reduce the volume of the tetrahedron.

235. If h is the altitude of the segment, then its

volume is equal to % Sh——;— nh3.  The greatest

volume will be achieved ifor 'hal/—z‘s-;—t- ; it will be

S I/—S-
equal to 5 o

236. Note that the shadow thrown only by the upper
face of the cube (assuming that al] the remaining faces
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are transparent) represents a square 55 °n 8 side.

Hence it follows that the area of the shadow cast by the
cube will be the least when the source of light is located
above the upper face (only the upper face of the cube is

2
) with the area
b—a

of the lower face of the cube taken into account.

237. The statement (1) is true, let us prove this.
Denote by P, the polygon obtained when our polygon is
cut by a plane not passing through its centre, S denoting
the area of this polygon. P, is a polngOn symmetric to P,
with respect to the centre of the polygon. Let us denote
by II the smallest convex polyhedron containing P, and
P, (11 is called the convex shell of P, and P,). Obviously,
IT is a central-symmetric polygon, its centre coincides
with the centre of the original polyhedron. All the ver-
tices of II are either vertices of P, or vertices of P,.
Let P denote the polygon obtained when II is intersected
by the plane passing through the centre parallel to the
faces of P, and P,, q its area. Let us take a face N of the
polyhedron II diferent from P, and P,. It is obvious
that any section of the polyhedron IT by a plane parallel
to N must intersect either simultaneously all the three

olygons P,, P,, and P or none of them. Since the poly-
edron IT is convex, the line segments ,, l,, and ! along
which this plane cuts P,, P,, and P are related as follows:

1> % (!; + ;). Hence it follows that ¢=> S. (We inte-

illuminated); it will be equal to (

grate the inequality l}-;-(ll + 1,) with respect to all

possible planes parallel to N.)

The statement (2) is false. Let us construct an example .
Consider in a rectangular Cartesian coordinate system the
polyhedron whose points satisfy the inequality |z | +
Iy I8+ | 2| < 1. (This polyhedron represents a reg-
ularfoctahedron.); All the faces of this polyhedron are

regular triangles with side }/'2 and radius of the circum-

scribed circle l/% . The section of this polyhedron by
a plane passing through the origin and parallel to any
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V2

2

the same radius of the circumseribed circle. But ]/2 <

2
V'
"3" .
Remark. For an arbitrary convex central-symmetric
solid the following statement is true. Let R and R, denote

the radii of the smallest circles containing the sections
of the given solid by two parallel planes, the second

face represents a regular hexagon with side and

plane passing through the centre; then R,> 12—3- R. As

we have already seen, an equality in this case is
achieved for a regular octahedron.

238. 4/3.

239. Let A and B be the vertices of the cones, M and N
two points on the circle of the bases, L a point diametri-
cally opposite to the point M (| AM | =V P+ H3,
| BM | = V' r2 + h%. Through M pass a plane perpen-
dicular to AM and denote the projections of B, N, and
L on this plane by B,, N,, and L,. The distance between
AM and BN is equal to the distance between M and
B.N,, and cannot exceed | MB, |.

The condition & < H implies that | MB, | < | ML, |,
that is, the point B, is situated inside, or on the boundary
of, the projection of the base of the cones on the passed
plane, and the distance between M and B,N, is equal to
MB, if MB, and B,N, are mutually perpendicular.
(h4+H)r

P+ H?'

240. Extend the edge B,B beyond the point B and
on the extension take a point K such that | BK | = a.
As is readily seen, K is equidistant from all the sides of
the quadrilateral AB,CD. On the diagonal B;D take
a point L such that —Ir%l—?_ll-= V' 2. The point L is the
end point of the bisectors of the triangles B,AD and
B,CD and, hence, L is also equidistant %rom t)he sides
of the quadrilateral AB,CD. Now, we can prove that all
the points of the line KL are equidistant from the sides

Answer:
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of the quadrilateral. Thus, the sought-for radius is equal

to the shortest distance hetween the line KL and any of

the lines forming the quadrilateral AB,CD. Find the
distance, say, between the lines KL and AD. Projecting
the points X and L on the plane CDD,C,, we get the

goints K, and L,. The desired distance is equal to the
istance from the point D to the line K,L,.

Answer : a 1/1—142—2.

241. Let the diagonal AC, lie on the edge of the di-
hedral angle, the faces of the angle intersect the edges
of the cube at points M and N. It is not difficult to notice
that if the volume of the part of the cube enclosed inside
this angle reaches its greatest or smallest value, then
the areas of the triangles AC,M and AC,N must be equal
(otherwise, rotating ghe anglle in the required direction,
we shall be able both to increase and decrease this
volume).

If 0 <« a < 60°, then the part of the cube under con-
sideration has a volume contained in the interval from
_1 to 1 v For o = 60° this
2/ 3 cot & 3(1+Vscot7)
volume is constant and is equal to 1/6.

For 60° << a << 120° the extreme values of the inter-
val must be increased by 1/6 and « replaced by a — 60°,
for 120° <« a << 180° they must be increased by 1/3, and
o replaced by a — 120°.

242. Note that the area of the projection of any par-
allelepiped is always twice the area of the projection
of some triangle with vertices at the end points
of three edges of the parallelepiped emanating from one
of its vertices. For a rectangular parallelepiped all such
triangles are congruent. The greatest area of the pro-
jection of a rectangular parallelepiped will be obtained
when one of such trianglies is parallel to the plane on
which the parallelepiped is projected. Thus, the greatest
area of the projection is equal to V a2b® + b%c® -+ c%a.

243. Prove that the volume of such tetrahedron is less
than the volume of the tetrahedron two faces of which
are regular triangles with side of { forming a right angle,
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244. (1) This statement is false. For instance, take
inside the triangle ABC two points D; and E; such that
the sum of the %istances from D, to the vertices of the
triangle is less than the sum of the distances from E,
to the vertices. Now, take a point D sufficiently close
to D, so that the sum of the distances from D to the ver-
tices A, B, and C remains less than the sum of the
distances from the point E,. Take E inside ABCD on
%he perpendicular to the plane ABC erected at the point

1-

(2) This statement is true. Let us prove this. Denote
bf M the point of intersection of the line DE and the
plane ABC. Obviously, M lies inside the triangle ABC.

The lines AM, BM, and CM separate the plane of
the triangle ABC into six parts. The projection of D
on the plane ABC, the point D,, is found in one of these
six parts. Depending on the position of D,, one of the

A NNV N
angles D;MA, D;,MB, D,MC is obtuse. If the angle

N
D;MA is obtuse, then DMA is also obtuse, and, hence,
the angle DEA is also obtuse. Hence it follows that

| DE | < | DA |.
245. Let 2a be a side of the base, i the altitude of the
pyramid. Then R is equal to the radius of the circle cir-

cumscribed about the isosceles triangle with base 2¢ V' 2
and altitude A, R = g‘-’——;h;li— ; r is equal to the radius
of the circle inscribed in an isosceles triangle with base 2a
and altitude &,

r=- (Y FFB—a).

Let

R 22+4h?

r - 2a(V a*+hi—a)
We will have 2+ z = 2k (V1 + = — 1), whence

224+41+k— k)2 + 44 8 = 0. The discriminant
of this equation is equal to 16k (k* — 2k — 1). Thus,

k= V 2+ 1, which was required to be proved.

=k, h2=uzal.
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246. The centres of gravity of the faces of the tetra-
hedron serve as the vertices of the tetrahedron similar
to the given one with the ratio of similitude 1/3. Conse-
quently, the radius of the sphere passing through the
centres of gravity of the faces of the given tetrahedron
is equal to R/3. Obviously, this radius cannot be less
11;11;311 the radius of the sphere inscribed in the given tetra-

ron.

247. Let in the tetrahedron ABCD | AB| = b,
| CD | = ¢, the remaining edges being equal to a. If ¥
is the midpoint of AB and M is the midpoint of CD,

q £ R

M

Fig. 49

then the straight line MN is the axis of symmetry of the
tetrahedron ABCD (Fig. 49, a). Now it is easy to prove
that the point for which the sum of the distances to the
vertices of the tetrahedron reaches the smallest value
must lie on the line MN. Indeed, let us take an arbitrary
point P and a point P’ symmetric to it with respect to
the line MN. Then the sums of the distances from P
and P’ to the vertices of the tetrahedron are equal.
If K is the midpoint of PP’ (K lies on MN), then in the
triangles PAP’, PBP’, PCP', and PDP’, AK, BK, CK,
and DK are the respective medians, and a median of
a triangle is less than the half-sum of the sides including
it,
The quantity | MN | is readily found:
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Consider the equilateral trapezoid LQRS. (Fig. 49, b)
in which the bases | LS | and | QR | are equal to b and ¢,
respectively, and the altitude is equal to 4. Let F and E
be the respective midpoints of the bases LS and QR.
If Kisapointon MN,and Ton FE,and | FT | = | NK|,
then, obviously, the sums of the distances from K to the
vertices A, B, C, and D and from 7T to the vertices
L, S, S, and R are equal. And in the trapezoid LQRS
as well as in any convex quadrilateral) the sum of the

istances to the vertices reaches the least value at the
point of intersection of the diagonals and is equal to the
sum of diagonals.

Answer: V 4a®-2be.
248. Prove that the shortest way leading from the
point A belonging to the circle of the greater base to the

A
Fig. 50

diametrically opposite point C of the other base consists
of the element AB and diameter BC. Its length is 2R,
Denote by r the radius of the smaller base, by O its centre.
Consider the path leading from A to some point M be-

longing to the smaller base. The arc A M situated on the
lateralgsurface of the cone will have the smallest length
if a line segment will correspond to it on the development
of the lateral surface of the cone. But this development
with the angle between the generatrix and the base equal
to 5t/3 and t%e radius of the base R represents a semicircle
of radius 2R. Hence, the development of a frustum of

a cone is a semiannulus. Here, if to the arc BT! on the
base there corresponds a central angle ¢, then on the
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development, a central angle % (Fig. 50) will correspond
to this arc. Consequently,

| AM [*=4R* 4 4r*_8Rrcos-2-, | MC|=2rcos %
2 2

It remains to prove that

]/ 4R 4r>—8Rr cos %4- 2r cos -(21)-},, 2R.

This inequality is proved with the aid of obvious trans-
formations.

249. Fix the quantities |a|, |b |, | ¢ |, denote by
z, y, and z the cosines of the respective angles between a
and b, b and ¢, ¢ and a.

Consider the difference between the left-hand and
right-hand sides of the inequality in question.

We get

la|4+|b|+]ec]

+V [aP+1b[P+|c>+2[al-|b|z+42]|b[-]c|y+2]c|-1a|z
—VTapP+[bP+2]al-[blz—V B[+ cP+2[b|-[c|y
—Vicl*+l1al?+2[c|-[alz=f(z, ¥, 2).

Note that the function q>(t)=]/d+t—]/l+t=
d—! is monotone with respect to ¢. This

VatiryVite ,
implies that f(z, y, z) reaches its least value when z, y,
z are equal to 41, that is, when the vectors a, b, and ¢
are collinear. In this case our inequality is readily
verified.

250. Let the straight line MAN intersect D{C; at the
point L. Set: | AM | =z, | BN | = y. It follows from
the hypothesis that z > a, y > a. Projegting all the

. I cl I _ @
points on the plane ABB;A,, we find I LD: | -_C:an ,
| C1L |

|LD1I_

and projecting them on the plane ABCD, we find
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y—a __Yy—a

= , whence zy =
a z—a a
(z 4+ y) a. But (z + y)? > 4zy. Hence, zy > 4a®
Now, we get | MN |* = 2* + y* + o = (z + )* —

2y + @ = B oy ta= 1 @ —@P>
942. The least value of | MN | is equal to 3a.

251. If z is the length of two other sides of the rec-
tangle, then the volume of the pyramid is equal to

ax a? x2

Consequently,

3 bz—T—T. The greatest value of the volume
7 4b: —at 2__g2
will be for z = %—a—- , it equals a—@%—ﬁ—),

252, Let M be a point on the line AB;, N on the line
BC,, M, and N, the respective projections of M and N
on the plane ABCD. Setting | BM, | = z, | BN, | = y,
we get

| MyNy | =V S, | MN | =V 22+ ¥+ (a—z—y)*

By the hypothesis, | MN | = 2 | MyN, |, consequent-
ly, (6—z— P =3+ ). Let 2+ 2=,

2 4 y = v, then 2u? — »® > 0, and since u’=—3—(a—-v)’,

replacing u? in the inequality relating u and v, we obtain
the following inequality for wv: v? 4 4av — 242 << 0
whence a (24 V6 <v<a(YB—2). We _now find
the least value of | MN |, it is equal to 2a (V'3 — V 2).

253. Consider the cube ABCDAlBiCIDl with an edge

2R. Arrange the axes of the given cylinders on the lines
AAI, Dc, BICIQ

(a) The centre of the cube is at a distance of R V 2
from all the edges of the cube. Any point in space is
located at a distance greater than R )/ 2 from at least
one of the edges AA,, DC, B,C,. This follows from the
fact that the cylinders with axes A4,, DC, B,C, and radii
RV 2 have the only common point, the centre of the
cube. Consequently, the radius of the smallest ball
touching all the three cylinders is equal to R (V2 — 1).

(b) If K, L, and M are the respective midpoints of the
odges AA4,, DC, and B,(,, then the straight line passing
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through the centre of the cube perpendicular to the plane

KLM is found at a distance of R /2 from the lines A4,
DC, and B;B; KLM is a regular triangle, its centre
coincides with the centre of the cube. Hence it follows
that any straight line intersecting the plane KLM is
situated from at least one vertex of the triangle KL M
at a distance not exceeding the radius of the circle circum-

scribed about it which isequal to R 2. Thus, the radius
of the greatest cylinder touching the three given cylinders
and satisfying the conditions of the problem is equal to
R(V2—1).

254. Let ABCD be the tetrahedron of the greatest
volume, O the centre of the given spheres. Each line seg-
ment joining O to the vertex of the tetrahedron must be
perpendicular to the face opposite to this vertex. If, for
instance, AQ is not perpendicular to the plane BCD,
then on the surface of the sphere on which the point A
lies it is possible to find points lying at greater distances
than the point A does. (This reasoning remains, obvious-
ly, true if A, B, C, and D lie on the surfaces of different
spheres and even not necessarily concentric ones.) Hence
it follows that the opposite edges of the tetrahedron ABCD
are pairwise perpendicular. Let, further, the points 4

and B lie on the sphere of radius R = 1/ 10, and € and D
on the sphere of radius r = 2. Denote by x and y the re-
spective distances from O to AB and CD.

Through AB, draw a section perpendicular to CD.
Denote by K the point of intersection of this plane and
CD. Taking into consideration the properties of our tet-
rahedron ABCD, it is easy to prove that |AK | =
| BK |, O is the point of intersection of the altitudes
of the triangle ABK. Draw the altitudes KL and AM
(Fig. 51). From the similarity of the triangles ALO

and OKM we find |OM | = ﬁRy—. Further, | AB | =

2V R — 2%, and from the similarity of the triangles
AOL and AMB we get

R 2yR_—z
V.Rz-—'xz R_i_%_

ki

13—0449
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whence 222 4 zy = R2. Proceeding in the same way, we
get the equation 2y2 4 zy = r®. From the system of
equations

222 '+ zY = 1.0,
2yt xy=4

we find z = 2, y = 1. The volume of the tetrahedron
ABCD will be equal to 6 V2.

Fig. 51

255. Let A denote the vertex of the trihedral angle
whose plane angles are right angles, B the vertex of t
other angle. On the line segment AB take a point M such
that 2| AM | = | MB |. Through the point M pass
a plane perpendicular to AB. This plane will cut each
of the two trihedral angles in a regular triangle with side

b=a ]/g . In Fig. 52, a, the triangle PQR corresponds

to the section of the trihedral angle with the vertex A.
The face BCD cuts off the pyramid QF KL from the pyra-
mid APQR (the position of the point F is clear from
Fig. 52, b). The volume of this pyramid is proportional
to the product | QK |-|QL|+| QF |. The quantity
| QF |, obviously, reaches the greatest value for o = n/3,

7
where & = CMQ. Let us prove that | KQ | -| QL | reaches
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the greatest value also for & = 15t/3. Since KL is tangent
to the circle inscribed in PQR, the perimeter of the tri-
angle KQL is constant and isequal to b, We set | KQ | =

Fig. 52

z, |QL| =y dthen KL =1b—z—y. Write the
theorem of cosines for the triangle KQL:

b—z—yP=a2+ 2 —ay= o> — 2b(z+ y)+ 3ay
=0=>b — 4bV zy + 32y > 0.

— b _
Consequently, either Vzy < - or Vazy>b. But
— b
<z < —g— and 0-<..y-<..—zq-. Hence, V zy < —.
b
Equality is obtained if r=y=-3.

Thus, the volume of the pyramid QKLF is the great-

b 2
est for a=umn/3. Here, | KQ |=| QL | =T=%l/-§'

Further, for ¢ =1/3, N is the midpoint of QM (Fig. 52, b).
Dlrlawing QT parallel to FB, we get | BT |=| MB|.
Thus,

| AF| | AB| 3 _ 2

i3
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The volume of the pyramid APQR is found readily,

- a® V'3 .
it is equal toT . Three pyramids equal to the pyra-
mid QFKL are cut off the pyramid APQR.

The volume of each of them amounts to —;5— % %:%

the volume of the pyramid APQR. Thus, for ¢ = /3
we get the “remainder” of the pyramid APQR, that is,
a polyhedron having the volume

6_5]4/‘3(1_ 125)':'13‘1831})/3'

Reasoning exactly in the same manner, we get that
for ¢=mn/3 from the pyramid BCDE there will remain
a polyhedron of the smallest volume, and the volume

. /E
of this polyhedron will be ““32‘4/ 3,

Adding the obtained volumes, we get the answer:
a® '3

20 L]

256. Setting | BD | = 2z, it is easy to find

z|1—222 | V 3—4z?
6(1—2?) )

V=Vapcp =

Making the substitution u =1 — z2, and then w =
4u + 1/u, we get

23 (1 — 2a%)3 (3—4a?)
(1—a?)?
(1—u) 2u—1)=(4u—1)
w3
(o) (140
=(0—w) (w—4)= — w24 9w —20.

(6V)2=




Answers, Hints, Solutions 197

The greatest value is attained for w = 9/2, whence
r= ]/j‘[—u,: l/.i_g._.:t:_llﬁ/._il ]

Answer; the greatest value of V 45cp equals 1—12-

257. Let z denote the radius of the ball, V (z) the sum
of the volume of the part of the ball situated outside the
tetrahedron and the part of the tetrahedron outside the
ball. It is easy to see that V' (z) = S; () — S, (),
where S, (z) is the surface area of the part of the ball out-
side the tetrahedron, S, () is the surface area of the part
of the ball enclosed inside the tetrahedron. Minimum is

reached for S, (z) = S, (z), whence z =a % ‘/g

258. Let a, b, c be the sides of the base, p=‘.figi£ ,

r the radius of the inscribed circle, z, y, z the distances
from the foot of the altitude of the pyramid to the sides
a, b, ¢, and h the altitude of the pyramid. Then

Siat=—30 VTR 45 b VTR +— ¢ VIFT 2
Note that the function f (z) = V h® + 22 is concave

(convex downward). And for such functions the following
inequality is valid:

o f (z1) + %of (x9) + . .« 4 apf(zy)
= [ (o 1+ agzy + ..o apay),
a; =0, i=1,2,..,n a+a,+ ... F+a,=1

Let us take advantage of this inequality. We get
a - b s c —
Siat= L v 2 s e Vi z)
lat=p (2p Vittz + 3 Vhity +2pl/h +z

b c 2
> l/z e .. _)
>p h+(2px+2py+2pz

S2 —_—
= Vi o =p VT,

which was required to be proved.
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259. If O is the centre of the circle, L is the projection
of N on the plane of the base, then the point M must
lie on the line segment LO since M is a point of the circle
nearest to N. On the other hand, since N is a point of the
diagonal of the face nearest to M, MN is perpendicular
to this diagonal, and, hence, KN is also perpendicular
to this diagonal, where K is the projection of M on the
face containing this diagonal (Fig. 53).

Let | AL | = ax, ANK is an isosceles right triangle,
consequently, | LK | = | AL | = ax,

| LK |  ax

| KD | =-g—(1-—4x).

Writing the Pythagorean theorem for A MOE (ME is
parallef to AD), we get the following equations for z:

(1—4x)® 1 =z \*_ 2
4 +( 2 1—-2::) T 144

<> [6 (1— 4z) (1—22)]2 4 [6 (1 — 4212+ [5 (1 —22) 1.
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Making the substitution 52 = 3% 4 42 in the right-hand
side and transposing it to the left, we get
[6 (1 — 4z) (1 — 22)?
—B@ -2+ 601 -4 —[4(1 —22)2 =0
<91 —22)2(1 — 82) (3 — 8z) + 4 (5—16x) (1 —8a)
=01 —82)[9 (1 — 22)2 (3 — 8a)
+ 4 (5 — 162)] = 0.

It is easy to see that the point X must lie to the left

of the point D, that is, 0 << z << 1/4, hence, the expres-
sion in the square brackets is not equal to zero, z = 1/8.
V 3
24 .
260. (a) Let | SC| = d; a, b, and ¢ the sides of the
triangle ABC, hq, by, h, the altitudes of the triangle ABC,
and s its area. Then

Answer: a

hq

— sin|3=——hb— sin y= ——— he
Vaire’ Va&Efa’ Y BRE
Thus, we get for d the equation
Vare  varae_, VIR

+ =1+

Sinoa=

hq hy he
Multiplying this equation by 2s, we get
aV d@3F024b VdiFaP=2s+ V c2d® + 4s2. (1)

Multiplying and dividing both sides of (1) by the differ-
ences of the corresponding quantities (assuming that

A BA), we get
a2—b3 c3
aVEYBE—bVETE VP iie—2
whence
ac® YV BB —be® V &} a? = (a2~ %) (V 2P - 4% — 25) \
(2
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Multiplying (1) by 5 — 4® and adding the result to (2),
we obtain

a(b2+c2—a?) Va2t b(b2—at—c?) V i3+ o2
=4z (b2—a?).

With the aid of the theorems of cosines and sines, the
last equation is transformed as follows

b2—g?

cosA-V & bt—cosB-V ddfat= 7 (3)

Transform the right-hand member of Equation (3) as
follows:

b Z_Ra =2R (sin? B — sin? 4) = 2R sin (A} B) sin (B—4),

now, multiplying both sides of (3) by cos 4.V &+ 2+

cos B-V d® + %, we get the equation

(cos2 4 — cos2 B) d3 |- b2cos2 A — a®cos? B
= 2R sin (A 4 B) sin (B — 4)
X (cos AV d® + b2 + cos B-V d® + a). (4)

In  Equation (4) we see cos?2A — cos?B=
sin (A 4 B) sin (B — b2cos? A — a’cos? B =
4R? sin (B 4- A) sin (B A) Consequently, after reduc-
tion, Equation (4) is transformed to

—_ — 2
cosA-]/d”—l—b2+cosB-]/d’—|-a==-g—E—|- 2R. (4')
Adding (3) and (4'), we get

2co8 AV B 2=

a2 in2 2
>R -+ 2R (sin? B} cos? 4),
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whence
(V' @52 —2R cos A)2=0,
d? = 4R? (cos? A — sin? B)
= 4R2 cos (A + B) cos (A — B).
Thus,
| SC | =2R V cos (A ¥ B) cos (A— B)-

The problem has a solution if 4 4+ B < 90°, that is, in
the triangle ABC the angle C is obtuse.

(b) Let us take advantage of the notation used in
Item (a). Then our inequality is rewritten in the form

V &EFa +1/d2+b2 _V&tr 4
hb ha hc -

If the angle C is acute, then the right-hand side, as
it follows from Item (a}, is never equal to 1, consequently,
the inequality takes place, since it is fulfilled for d = 0.
And if C is an obtuse angle (or it is equal to 90°), then
the right-hand side is equal to 1 for the unique value of
d %if C is a right angle, then d = 0). But for d = 0 and
sufficiently large values of d the inequality is obvious
(for large d's it follows from the triangle inequality),
consequently, if for some value of d the left-hand side
were less than unity, then the left-hand side would take
on the value equal to unity for two different values of d.

261. Let ABCD be the given tetrahedron. On the edges
BC and BD take points M and N and solve the following
problem: for what position of the points M and N does
the radius of the smallest circle enclosing the triangle
AMN (we consider the circles lying in the plane A MN)
reach the least value? (Obviously, the radius of the
smallest hole cannot be less than this radius. For this
purpose, it suffices to consider the instant of passing
of the tetrahedron through the hole when two vertices
of the tetrahedron are found on one side of the plane of
the hole, the third vertex on the other side, and the fourth
in the plane of the hole.)

Sugpose that the points M and N correspond to the
desired triangle. Suppose that this triangle is acute.
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Then the smallest circle containing this triangle
coincides with the circumscribed circle. Circumscribe
a circle about the triangle A MN and consider the solid
obtained by revolving the arc A MN of this circle about
the chord AN. The straight line BC must be tangent to
the surface of this solid. Otherwise, on BC we could take
a point M, such that the radius of the circle circumscribed
about the triangle A M,N would be less than the radius
of the circle circumscribed about the triangle AMMN.,
The more so, BC must be tangent to the surface of the
sphere passi g through A, M, and N having the centre
in the plane A MN. 'lghe straight line BD must also touch
this sphere exactly in the same manner. Consequently,

BM|=|BN|. Set |BM|=|BN|=2z Let K
denote the midpoint of MN, L the projection of B on the
plane A MN (L lies on the extension of A K). The fore-
going implies that ZM and LN are tangents to the circle
circumscribed about the triangle A MN. This triangle is

isosceles, | AM | =|AN | =V 2 —z+ 1, | MN | =
A
z. If MAN = a, then
22 —2z42 . zV 32t —lat4
COSC&-—Z (xa—x—i-i) y Slll o= 2(:!:2—-33—‘-1) ?
3 2
|LK| = | ME | tan o= 2V 3242114

22 —22+2) °

s
Consider the triangle AKB, AK}i =p > 180°%

3r—2
cos = , |LK| = — | KB | cosf=
P V 3 (323 —4z+} %) | | .
z (2—3x) . .
— 2 Equating two expressions for | LK |,
2V 322 "4z -4 e d
we get for z, after simplifications, the equation
32 — 622 4 T2 — 2 = 0. (1)

The radius of the circle circumscribed about the triangle
AMN, will be

B—z41

Re—— |
V 322 —4z -4
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(It is possible to show that if AMN is a right triangle,

then its hypotenuse is not less than V15 —10yY2>
0.9.) Let us show that our tetrahedron can go through
the hole of the found radius.

On the edges CB and CA mark points L and P such
that | CL| =|CP|=|BM|= | BN | =z, where z
satisfies the equation (1).

Place the tetrahedron on the plane containing the

iven hole so that M and N are found on the boundary of
the hole. We will rotate the tetrahedron about the line MN
until the edge AB, passing the hole, becomes parallel
to our Iilane. Then, retaining AB parallel to this plane,
we displace the tetrahedron ABCD so that the points P
and L get on the boundary of the hole. And, finally, we
shall rotate the tetrahedron about PL until the edge DC
goes out from the hole. (The tetrahedron will turn out
to be situated on the other side of our plane, the face ABC
lying in this plane.)

Answer: the radius of the smallest hole R =

x22—z--1

V 822 —4z -4
323 — 622 4 7Tz — 2= 0. The relevant computations

yield the following approximate values: z ~ 0.3913,
R ~ 0.4478 with an error not exceeding 0.00005.

, wWhere z is the root of the equation

Section 4
262. Let S denote the vertex of the angle. Take points
A, B, and C on the edges such that | SA | =| SB| =

| SC |. The bisectors of the angles ASB and BSC
pass through the midpoints of the line segments AB and
BC, while the bisector of the angle adjacent to the angle
CSA is parallel to CA.

-4 -

264. , if is not a whole number,
28in — 2sin —
- 2 _ 2
! —1, if is a whole number, where [z]
. . O
28in 5 28in 5"

is an integral part of z.
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265. We shall regard the given lines as the coordinate
axes. Let the straight line make angles a, B, an_i y with

—
these axes. Then the projections of the vectors OA,, OB,,

and 5)(3'1 on the axes 04, OB, and OC will be respectively
equal to a cos 2a, a cos 2B, and a cos 2y, a = | 04 |. Con-
sequently, the point M of intersection of the planes pass-
ing through A,, B,, and C, respectively perpendicular
to 0OA, OB, an};l OC will have the coordinates (a cos 2a,
a cos 2B, and a cos 2y). The set of points with the coor-
dinates (cos® a, cos?® B, and cos®y) is a triangle with
vertices at the end points of the unit vectors of the axes.
Consequently, the sought-for locus of points is also
a triangle whose vertices have the coordinates (—a, —a,
d); (_a'r a, —d); (ao —a, —d).

266. Denote the given lines by I, and I,. Through I,

pass a plane p, parallel to I3, and through I, a plane p,
arallel to I,. It is obvious that the midpoints of tﬁe
ine segments with the end points on I, and I, belong to
the plane p parallel to p, and p, and equidistant from ﬁ
and p,. (It is possible to show that if we consider all
kinds of such line segments, then their midpoints will
entirely fill up the plane p].} Project now these line seg-
ments on the plane p parallel to the given plane. Now,
their end points will lie on two straight lines which are
the projections of the lines !, and I,, and the projections
themselves will turn out to be arazllel to the given line
of the plane p representing the line of intersection of the
plane p and the given plane. Hence it follows that the
required locus of points is a straight line,

267. (a) The whole space.

(b) Proceeding exactly in the same way as in Prob-
lem 266, we can prove that the locus of points dividing
in a given ratio all possible line segments parallel to
the given plane with the end points on the given skew
lines is a straight line. Applying this statement twice
(first, find the locus of midpoints of sides AB, and then
the locus of centres of gravity of triangles ABC), prove
that in this case the locusof centres of gravity of triangles
ABC is a straight line.

268. Through the common perpendicular to the
straight lines, pass a plane p perpendicular to I;. Let the
line NM intersect I at point L; N;, M;, L, be the re-
spective points of intersection of the lines I,, 1,, I3 with
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the common perpendicular, N,, M, the projections of N
and M on the passed plane, o and f the angles made by
the lines !, and I, with this plane, K the midpoint of

Fig. 54

NM, K, and K, the Erojections of K on the common per-
pendiclﬁar and on the plane p (Fig. 54). We have

| KKy | _ | NNy |+| MM, |

| K1Ks | | NoNy | 4| MM, |

__ | NoN, | tana+-| MM, | tan B

| NINI |+| M2M1 I

| MyLy | 4) MyLy |
hence, the point K describes a straight line.
269. Let usintroduce a rectangular coordinate system,
choosing the origin at the point A. Let e, (a;, by, ¢1),
o (ag, by, ¢3), .. ., €y (a,, by, c,) be unit vectors par-
aflel to the given lines, e (z, y, z) & unit vector parallel

to the line satisfying the conditions of the problem. Thus,
we get for e the following equation

laz by tciz| 4+ lage+ boy +caz |+ ...
+ | apz + by + ¢,z | = const.

const,
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It is now easily seen that the locus of termini of the
vector e will be the set of circles or parts thereof situated
on the surface of the unit sphere with centre at 4.

270. Place equal loads at the points A4, B, C, A,,
B;, and C;. Then the centre of gravity of the obtained
system of loads will coincide with the centre of iravity
of the triangle with vertices at the midpoints of the line
segments AA,, BB,, CC,.

On the other hand, the centre of gravity of this system
coincides with the midpoint of the line segment GH,
where G is the centre of gravity of the triangle ABC,
H the ﬁentre of gravity of the three loads found at A,,
B,, and C,.

" With a change in A,, B,, and C, the point H moves
in the straight %?ne I, and the point G remains fixed.
Hence, the point M, which is the midpoint of GH, will
describe a straight line parallel to 1.

271. Through A draw a straight line ¢ parallel to I.
The sought-for locus of points represents a cylindrical
surface, except for ! and ¢, in which ! and ¢ are diametri-
cally opposite elements.

272. Let us first prove that if the line MK is tangent
to the sphere B, then it is also tangent to the sphere a.

Fig. 55

Consider the section of the given spheres by the plane
passing through points M, K, 4, B, and N (Fig. 55). The
angle MKB is measured by half the arc KB enclosed
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Z\ A
inside this angle, consequently, M KB = BAN, since
the angle measures of the arcs KB and BN are equal (we
take the arcs situated on different sides of the line AN
if the tangency is external (Fig. 55, a) and situated on
one side if the tangency is interna; \(Fig. 55, b)). fg:nce

7N\ 7N\ N\
it follows that AMK = ABN or AMK = 180° — ABN,

Z\ ~

and this means that A MK is measured by half A 4, since
the corresponding arcs AM and AN have the same angle
measure, that is, M K touches the circle along which the
considered section cuts the sphere a.

It is now possible to prove that the locus ol points M
is a circle.

273. Let A and B denote the given points, C the point
of intersection of the line A8 with the given plane, M
the point of tangency of a ball with the plane. Siunce
|CM |2=|CA | |CB]|, M lies on the circle with
centre at the point ¢ and radius ¥ | CA |-| €8 |. Con-
sequently, the centre of the sphere belongs to the lateral
surface of the right cylinder whose base is this circle. On
the other hand, the centre of the sphere belongs to the
plane passing through the midpoint of AB perpendicular
to AB. Thus, the sought-for locus of points 18 the line
of intersection of the lateral surface of a cylinder and
a plane (this line is called the eilipse).

274. Denote by 0,, 0; and R,, R, the centres and
radii of the given spheres, respectively; M is the midpoint
of a common tangent. Then, it is easy to see that

| O:M | — | O3M |* = R} — Ry,

and, consequently, M lies in the plane perpendicular to
the line segment 0,0, and cutting this segment at a
point N such that

| O+:N |2 — | 02N |2 = R} — Rj.
Let us see what is the range of variation of the quan-
tity I NM Io Let I 0102 I = a and Rl > R2’ then

2__ R2
| O,N _—_._%_ (&_Eﬁz_}_a)_
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If 2z is the length of the common tangent, whose mid-
point is M, then

| MN |2=| OyM |2—| O;N |*=2 R}
1 (R} — R}
(A,

Now, if a > R, + R,, then the quantity 4z? changes
within the interval from a2 — (R, -t Rj)2 t0 a® — (R, —
R,)?, and, hence, in this case the locus of points M
will be an annulus whose plane is perpendicular to
0,0,, and the centre is found at the point N, the inner
radius is equal to

1 R R,)2
_2_(31_32) ‘/1__(1%2)__,

and the outer to

(Rl '_ Rﬂ)z
a?

1 Vs
- (B +Ry) ) 1— :
And if a << Ry 4+ R,, that is, the spheres intersect, then
the inner radius of tﬂe annulus will be equal to the radius
of the circle of their intersection, that is, it will be

o VT Bif R @1 = Fo) (@t Bo— By) (R Fama).

275. Denote by A and B the points of tangency of the
lines I, and I, with the sphere, and by K the point of tan-
gency of the line MN with the sphere. We will have

|AM|=|MK]|, |BN|=]|NK]|.

Project [, and I, on the plane perpendicular to AB. Let 4,,
M,, N,, and K, denote the respective projections of the
points A (and also B), M, N, and K. Obviously,

[AM AN
raM | - P TTBNT C ®

where p and ¢ are constants. Let now 4 and % be the dis-
tances from K; to the straight lines 4, M, and A, N;.
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We have

1,

—_— M

a_ AT N Samk, | | AN,

=|M1K1|.|A:11“'1]=|1"—’K|_|141N1|

| N\K, | | Ay M, | | NK | | A, M}
=|AMI.|4_LN1|=___¢L

| AiM, | | BN | p-

Thus, the ratio of the distances from the point K; to
two given straight lines in the plane is constant. This
means that the point K, belongs to one of the two straight
lines passing through the point 4,. And the sought-for
locus of points represents two circles on the surface of
the given sphere. These circles are obtained when the
sphere is cut by two planes passing through the lines de-
scribed by the point K; and the straight line AB. The
points A and B themselves are excluded.

279. Let BK denote the altitude of the triangle ABC,
H the point of intersection of the altitudes of the tri-
angle ABC, BM the altitude of the triangle DBC, N the
point of intersection of the altitudes in the triangle DBC.
Prove that N is the projection of the point H on the
plane DBC.

Indeed, KM is perpendicular to DC, since BM is
perpendicular to DC, and KM is the projection of BM
on the plane ADC. Thus, the plane KMB is perpendicular
to the edge DC, consequently, HN is perpen(ficll-lliar toDC.
Exactly in the same way, HN is perpendicular to the
edge DB. Hence, HN is perpendicular to the plane DBC.
It is not difficult to prove now, that N lies in the plane
passing through AD perpendicular to BC.

The required locus of points represents a circle with
diameter H L, where L is the foot of the altitude dropped
ilrané A on BC whose plane is perpendicular to the pliane

283. Denote by P and Q the points of intersection of
the opposite sides oi the quadrilateral ABCD. If the
section by the plane of the lateral surface of the pyra-
mid ABCDM is a parallelogram, then the plane of the

140449
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section must be parallel to the plane PQM, the sides of
the parallelogram being parallel to the straight lines PM
and QM. Hence, in order for a section to be a rectangle,
the angle P M(Q must be equal to 90°, that is, M lies on the
surface of the sphere with diameter PQ. (Thus, Item (a)
has been solved.}(

(b) Denote by K and L the points of intersection of the
diagonals of the quadrilateral ABCD and the straight
line P(Q. Since the diagonals of the parallelogram obtained
by cutting the lateral surface of the pyramid ABCDM
by a plane will be parallel to the lines MK and ML,

/°\
this parallelogram will be a rhombus if KML = 90°,
that is, M lies on the surface of a sphere with diameter K L.

(cz)eltems a) and (b) imply that the locus of points M
will a circle which is the intersection of two spheres
of diameters PQ and KL.

gl) The locus of points is a conical surface with vertex
at the point of intersection of the diagonals of the quadri-
lateral ABCD whose directing curve is a circle from the
preceding item.

284, If K and L are the midpoints of BC and AM, O
the centre of the sphere circumsecribed about ABCM,
then, since G is the midpoint of LK and OG is perpen-
dicular to LK, |OL | = | OK |. Hence it follows that
| AM | = | BC |, that is, M lies on the surface of the
sphere of radius BC centred at A.

Let, further, N be the centre of gravity of the tri-
angle ABC, 0, the centre of the circle circumscribed about
the triangle ABC, G, the projection of G on the plane
ABC. Since, by the hypothesis, OG is perpendicular to
AK,0,G, is also perpendicular to A K. Hence, G lies in the
plane passing through O, and perpendicular to AK.
Hence, since

| NG| =— | VM|,

it follows that the point M also lies in the plane per-
pendicular to AK.

Thus, the sought-for locus of points represents the
line of intersection of a sphere and a plane, that is,
generally speaking, is a circle.

285. Introduce a rectangular Cartesian coordinate
system taking for O the vertex of the trihedral angle and
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directing the axes along the edges of this angle. Let the
plane of the circle make angles a, B, and y with the coor-
dinate planes X0Y, Y0Z, and ZOX, respectively. Then
the point 0, (the centre of the circle) will have the coor-
dinates (R sin B, R sin y, R sin a), where R is the radius
of the circle. From the origin draw a straight line per-
pendicular to the plane of the circle. This line will make
angles B, v, and « with the coordinate axes. Consequently,

cos®a 4 cos? f 4 cos?2yp =1
and, hence,

| 00, |2 = R? (sin? a 4 sin? B 4 sin? y) = 2R2,

Thus, the point O, lies on the surface of the sphere with

centre at O and radius R 2. On the other hand, the
dis1(;1an§e from O, to the coordinate planes does not ex-
cee .

Consequently, the sought-for set represents a spherical
triangle bounded by the planes z =R, y= R, 2z = R

on the surface of the sphere | 00, | = R V2, situated
in the first octant.

286. Let the spider be found in the vertex A of the
cube ABCDA,B,C.D,. Consider the triangle DCC,. It
is rather easy to dprove that the shortest path joining A
to any point inside the triangle DCC, intersects the edge
DC. In this case, if the faces ABCD and DCC,D, are
“developed” so as to get a rectangle made from two squares
ABCD and DCC,D,, then the shortest path will repre-
sent a segment of a straight line, Consequently, the arc
of a circle with radius of 2 cm whose centre is found at
the point A of the development situated inside the tri-
angle DCC, will be part of the boundary of the sought-
for locus of points. The entire boundary consists of six
such arcs ans separates the surface of the cube into two
parts. The part which contains the vertex A together
with the boundary is just the required locus of points.

287. We take the edges of the trihedral angle for the
coordinate axes. Let (z, y, z) be the coordinates of the

—>- .
vector OA, (z;, y;, 2;) the coordinates of the ith section
14®
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of the polygonal line. Each section of the polygonal line
is regarded as a vector. Then

2=z ¥= ¥ 2= %

here, the conditions of the problem imply that all the z;
are different from zero and have a sign coinciding with
that of = (the same is true for y; and z;). Obviously,
| 0A | < a. On the other hand,

lzl+ 1yl +1zl=Uzl+1wl+1z%])
}Zli:a

(; is the length of the ith section of the polygonal line).

It can be readily shown that any point A satisfying
the conditions |04 | <<a, |zl + 1yl +12]|> a
where z, y, z are the coordinates of the point 4, can be
the end point of a polygonal line consisting of not more
than three sections and satisfying the conditions of the
Problem. Let, for instance, M; and M, be two points
ying on one straight line emanating from the point O
such that |z, |+ [y | + | z | = @, 21933, 7%= 0 (24, ¥4,
z; the coordinates of the point M,), | OM, | = a. Con-
sider the polygonal line with vertices (0, 0, Of, (24, 0, 0),
(21y y12 0y (24, W z,). The length of this polygonal line
is equal to a. ‘gtretching” this line, we get all points
of the line segment M M, (excluding Mli' Thus, the
desired locus of points consists of all points lying outside
the octahedron |z |4 |y| 4+ |2| = a and inside or
on the surface of the sphere with centre O and radius a.
In this case, the points situated in the coordinate planes
are excluded.

288. First of all note that if r is the radius of the ball
inscribed in ABCD, then, firstly, all the edges of the
tetrahedron ABCD are longer than 2r and, secondly, the
radius of the circle inscribed in any face of the tetra-
hedron is ireater than r. The first assertion is obvious.
To prove the second assertion, through the centre of the
inscribed ball, passa plane parallel, say, to the face ABC.
The section cut is a triangle A,B,C; similar to the tri-
angle ABC with the ratio of similitude less than unity
and containing inside itself a circle of radius r.

(1}n The condition determining the set of points A4
will be expressed by the inequality | OA | = 3r, the
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equality | OA | = 3r being true for a regular tetrahedron.

for some point A the inequality | OA | < 3r were
fulfilled, then the radius of the smallest ball containing
the tetrahedron ABCD would be less than 3r, which is
impossible (see Problem 246).

(2) The condition determining the set of points B
will be expressed by the inequality | OB | > r V'5. In-
deed, if for some point B the ine(iuality |OB | < r V5
were fulfilled, then for the triangle DBC the radius of
the circle containing this triangle would be not greater
than V512 — 12 = 2r, that is, the radius of the circle
inscribed in the triangle DBC would not exceed r, which
is impossible.

(3) The condition determining the set of points C is
expressed by the inequality |OC | > r V3. Indeed, if
|0C | <r V2, then | CD | < 2r.

(41)’ The condition determining the set of points D
will be expressed by the inequality | 0D | > r.

Let us show that | OD | can be arbitrarily large. To
this effect, for the tetrahedron ABCD take a tetrahedron
all faces of which are congruent isosceles triangles having
sufficiently small vertex angles. Then the centres of the
inscribed and circumscribed balls will coincide, and the

ratio -!—:L , where R is the radiusof tho circumscribed ball,

can be arbitrarily large.

289. If MC is the hypotenuse of the appropriate tri-
angle, then the equality | MC|2=| MA |24 | MB |2
must be fulfilled. Introducing a rectangular Cartesian
coordinate system, it is easy to make sure that the
point M must describe the surface of a sphere. Find the
centre and radius of this sphere.

Let C; be the midpoint of AB, C, lie on the extension
of CCy, | C1C, | = | CCy| (ACBC, is a parallelogram),
Denote the sides of the triangle ABC, as usual, by a, b,
and ¢, the median to the side AB by m,. We shall have

| AB |2 c?
| MA 24| MB|*=2| MC, |*+-—5—=2|MCi[*+5.

Since
| MA |24 | MB |2 = | MC |2,



214 Problems in Solid Geometry

we get

2
| MC 22| MC, |2= -, €y

N
Let MC,C = ¢, write for the triangles MC,C and MC,C,
the theorem of cosines:

| MC |2 = | MC, |2+ 4m2 — & | MCy | m, cos @, (2)
| MC, |2 = | MCy |> + mi — 2| MC, | m, cos q. (3)

Multiplying (3) by 2 and subtracting the result from (2),
we get (taking into account (1))

2
| MCy |* = 2m} — 5 = @ + b — oo,

Thus, for this case the set of points M will be non-
empty if a® 4 b2 — ¢2 > 0, that is, the angle C in the
triangle ABC is not obtuse. Consequently, the whole set
of points M for an acute-angled triangle consists of three
spheres whose centres are found at the points C,, 4,
and B, such that CAC,B, ABA,C, BCB,A are parallelo-
grams, the radii being respectively equal to YV a3 4- b2 —c2,
V 52 —{— ¢ — a2, and V a® I c2—b%. For the right-angled
triangle ABC the sought-for set consists of two spheres
anﬁl a point, and for an obtuse-angled triangle of two
spheres.

290. Let O denote the centre of the Earth, A the point
on the equator corresponding to zero meridian, M the
point on the surface of the Earth with longitude and lati-
tude equal to ¢, N the projection of M on the plane of
the equator, Introducing a rectangular Cartesian coordi-
nate system in the plane of the equator, taking the line
OA for the z-axis, and the origin at the point 0, we get
that N has the following coordinates: z = R cos? g,
y = R cos ¢ sin ¢, where R is the radius of the Earth.
It is easy to check that the coordinates of the point N
satisfy the equation

R 2 o BZ
(x""'_z') +y %

i.e. the sought-for set is a circle with centre (—g- , 0)
and radius R/2.
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291. Introduce the following notation: S is the vertex
of the cone, N the projection of the point M on the plane
passing through the points S and A parallel to the base
of the cone, P a point on the straight line SN such that

N\
SMP = 90° (Fig. 56), MP is a normal to the surface
S L A

Fig. 56

of the cone. It follows from the hypothesis that AP is

-\ 7
parallel to the reflected ray. Hence AMP = M}}A,
| AM | = | AP |. Let o be the angle between the altitude
and generatrix of the cone | SA | = a. The plane passing
through M parallel to the plane SPA cuts the axis of the
ccl)ne at the point S;, A, is the projection of A on this
plane,

VS
| $Sy | ==, MS14;,=¢, | MA;| =y.

By the theorem of cosines for the triangle S, MA,, we have

P = 2% tan? & + a? — 2az tan « cos Q. (1)
Besides,

| PA|2=| MA |2 = y? + 2, (2)
|sp| =AM ___= =& (3)

sina = cosasina  sin 2a
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Writing the theorem of cosines for the triangle SPA
and using the above relationships, we have

42 bazx

3 3 2 __
x2 tan? oo —2ax tan o cos 2= —_——
¢+ sin% 200  sin2a

cos @,

whence z==asin 2c cos ¢.

If now we erect a c}aerpendicular to SN at the point ¥
in the plane SPA and denote by L the point of its inter-
section with SA, then

_|SN|_=ztana

cos @ cos @

Thus, | SL | is constant, consequently, the point ¥
describes a circle with diameter SL.

292. When solving this problem, we shall need the
following statements from plane geometry.

If in a circle of radius R through a point P found at
a distance d from its centre two mutually perpendicular
chords AD and BE are drawn, then

(@) | AD |24 | BE |2 = 8R? — 448,

(b) the perpendicular dropped from P on AB bisects
the chord DE.

For a three-dimensional case, these two statements are
generalized in the following way.

If through a point P found inside a ball of radius R
centred at O three mutually perpendicular chords AD,
BE, and CF are drawn at a distance d from its centre, then

(a*) | AD |24 | BE |24 | CF |2 = 12R? — 842,

b*) a straight line passing through P perpendicular
to the plane ABC passes through the median point of the
triangle DEF.

Let us prove Item (a*). Let R,, R,, R3 denote the radii
of the circles circumscribed respectively about the quadri-
laterals ABDE, ACDF, and BCEF, d,, d,, dg the distances
in these quadrilaterals from the centres of the circum-
scribed circles to the point P, and =z, y, s the respective
distances from the point O to the planes of these quadri-
laterals, Then 224 y? 22 =42, d% 4 d3 4 d} =
2 (22 4 2 + 2 = 242, Rt + R} + RZ = 3R? — q2.
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Thus, taking advantage of the statement of Item (a),
we get

| AD |2+ | BE |2 | CF |z£%[( | 4D |2+ | BE |3
4+ (| BE |24 | CF |)4-(| CF |34 | AD |3)
=-%- (8R}—4d}--8R? —4d3 -8R} —4d3
=12R? —8d2.

To prove Item (b*), project the drawn line on the
planes of the quadrilaterals ABDE, ACDF, and BCEF,
and then take advantage of Item (b).

Now, let us pass to the statement of our problem. On
the line segments PA, PB, and PC construct a parallel-
epiped and denote by M the vertex of this parallelepiped
opposite the point P.

Analogously, determine the point N for the line seg-
ments PD, PE, and PF. K is the point of intersection
of PM with the plane ABC, Q the midpoint of PM, T
the midpoint of PN, 0, the centre of the circle circum-
scribed about the triangle ABC, and H the foot of the
perpendicular dropped from P on ABC.

It follows from Item (b*) that H lies on the straight
line NP. Further, K is the point of intersection of the

medians of the triangle ABC, | PK | ---—;-l PM |. The

straight line 0Q is perpendicular to the plane ABC and
passes through the point 0,, since 0 and Q are the centres
of two spheres passing through the points A, B, and C.
(Note that we have proved simullij;aneously that the
points 04, K, and H are collinearand | KH | = 2| 041K |.
As is known, this straight line is called the Euler line.)

Thus, 0Q is parallel to NP, the same as 70 is parallel
to MP. Hence, O is the midpoint of N M.

On the line segment OP take a point S such that

| PS | = % | PO |. The perpendicular dropped from S

on KH passes through the midpoint of XH. Consequently,
| SK | = | SH|. But SK | OM,
1

1
| SK |=—5-|OM | =~ | NM|.
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It follows from Item (a*) that | N M )2=12R2—842
(N M is the diagonal of the parallelepiped whose edges are
equal to |AD |, | BE|, |CF|), that is | SK|=

—;— V3R? —24%is a quantity independent of the way
in which the line segments PA, PB, PC were drawn.
293. Denote by a, b, and e the unit vectors directed
-—
along the edges of the trihedral angle, let, further, ON =
> —>
e, P the centre of the sphere, OP = u, 04 = ra,

— ->
OB = yb, OC = zec.

The points O, N, A, B, and C belong to one and
the same sphere with centre at P. This means that

(u—e32=u? (ra—u?=nu?
(¥b — ) = u?, (z¢ — u)? = w2,
whence

e2—2eu =0,

z—2au=0,

y—2bu=0,

z—2cu=0.

Lete = aa 4 Bb - ye. Multiplying the second, third,
and fourth equations of System (1) respectively by «, 8,
and y and subtracting from the first, we obtain

(1)

o2 —azx — Py — yz = 0. (2)

If M is the centre of gravity of the triangle ABC, then
{ > —

— — 1
0M-=—5-(0A+ OB-- OC)=—:-_]— (za--yb--ze).

Taking into consideration Equation (2), we may conclude
that the locus of points M is a plane.

294, Prove that each of these planes passes throuﬁh
the point symmetric to the point N with respect to the
centre of gravity of the tetrahedron.

295. Prove that all these planes pass through the point
symmetric to the centre of the sphere circumscribed
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about the tetrahedron with respect to its centre of
gravity.

296. When solving Problem 295, we proved that
Monge’s point is symmetric to the centre of the sphere
circumscribed about the tetrahedron with respect to the
centre of gravity of the tetrahedron. Consequently, if
Monge’s point belongs to the plane of some face of the
tetrahedron, then the centre of the circumscribed sphere
is situated from this face at a distance equal to half
the length of the corresponding altitude and is located
on the same side of the face on which the tetrahedron
itself lies. This readily leads to the statement of our
problem.

297. Take advantage of the equality

41 MD |24 | AB |2
2 ?

where D is the midpoint of AB, and also by the fact that
in an arbitrary tetrahedron the sum of the squares of its
opposite edges is equal to twice the sum of the squares of
the distances between the midpoints of two pairs of its
remaining edges (see Problem 21).

298. Denote the areas of the facesof the tetrahedron
by S;, S,, S35, S; and the volume of the tetrahedron by V.
I? ris tiw radius of the sphere touching all the planes
forming the tetrahedron, then, with the signs of ¢; =
+1, i=1, 2, 3, 4, properly chosen, the equaiity

(8,51 + €58, + €385 + 3454)—:;- = V must be fulfilled.

In this case if for a given set g; the value of r determined
by the last equality is positive, then the corresponding
ball exists.

Thus, in an arbitrary tetrahedron there always exists
one inscribed ball (¢; = +1) and four externally inscribed
balls (one &; = —1, the remaining ones --1), that is,
four such balls each of which has the centre outside the
tetrahedron and touches one of its faces at an interior
point of this face.

Further, obviously, if for some choice of g; there
exists a ball, then for an opposite set ¢; there exists no
ball. This means that there are at most eight balls. There
will be exactly eight balls if the sum of the areas of any
two facesisnot equal to the sum of the areas of two others.

| MA |2+ | MB |?=
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299. For any two neighbouring sides of the quadri-
lateral there are two planes equidistant from them (the
bisector planes of the angle of the quadrilateral itself and
the angle adjacent to it). In this case, if three such planes
corresponding to three vertices of the quadrilateral inter-
sect at a certain point, then through this point there
passes one of the two bisector planes of the fourth vertex.
Thus, when finding the points equidistant from the lines
forming the quadrilateral, it su(flﬁces to consider the bi-
sector planes of three angles of this quadrilateral. Since
two planes correspond to each vertex, there will be,
generally speaking, e(iight points of intersection.

It remains to find out under what conditions some
three such planes do not intersect. Since our quadrilateral
is three-dimensional, no two bisector Flanes are parallel.
Hence, there remains the possibility of one bisector plane
to be parallel to the line of intersection of two others.
And this means that if, through some point in space,
three planes are passed parallel to the given ones, then
these three planes will intersect along a straight line.

Let, for the sake of definiteness, the bisector planes
of the three interior angles of the quadrilateral ABCD

Fig. 57

not intersect. Through the vertex C, draw straight lines
arallel to the sides AB and AD (Fig. 57) and on these
ines lay off line segments CP and CQ, | CP | = | CQ |.
Lay off equal line segments CM and CN on the sides CB
and CD.

The aforegoing reasoning imply that the bisector
planes of the angles MCP, PCQ, QCN, and NCM inter-
sect along a straight line and, hence, all the points of
this line are equidistant from the straight lines CP, CQ,
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CN, CM, that is, the lines CP, CQ, CN, and CM lie
on the surface of the cone, and PQNM is an inscribed
quadrilateral. Let the plane of the quadrilateral PQNM
intersect AB and AD at points L and K. The line LK is
paralle to QP, and this means that NMLK is also an
inscribed quadrilateral. Besides, it is easily seen that

| LB|=|MB|, |KD|=|DN|, |KA|=|AL|.
Hence, in particular, it follows that | AB| + | DC| =
| AD |+ | BC|.

Let now O denote the centre of the circle circumscribed
about the quadrilateral KLMN. The congruence of the
triangles LOB and MOB implies that O is equidistant
from the lines AB and BC. Proceeding in the same way,
we will show that O is equidistant from all the linesform-
ing the quadrilateral ABCD, that is, O is the centre
of the ball touching the straight lines AB, BC, €D, and
DA. Other cases are considere(f exactly in the same manner
to obtain analogous relationships among the sides of
ABCD: |AB |+ |AD|=|CD |+ |CB|, |AB|+
| BC|=|AD |+ | DC|. It is not difficult to show
that the indicated relationships among the sides of the
3uadrilateral ABCD are the necessary and sufficient con-

itions for the existence of infinitely many balls touching
the sides of the quadrilateral. In all remaining cases
there are exactly eight such balls.

300. Using the formula of Problem 11 for the volume
of the tetrahedron, prove that each of the relationships

under consideration is equal to i‘%‘iﬁzﬁ‘&, where S;, S,,

Ss, S, are the areas of the faces of the tetrahedron, V its
volume.

301. If h; (i = 14, 2, 3, 4) is the altitude of the cor-
responding face of the tetrahedron, then

4 1< 1 1< I§— 1
35 ’2—2 S}BE—R) =5 72 Sthi 1;;3 :

i=1 i=1

4
1 12— R2
:V]/ i i
7 2 RN

i=1
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If now d; is the distance {rom the centre of the circum
sl(iribed ball to the ith face (/2 is the radius of this ball),
then

12— R} = (13— h2)— (R*—d}) -+ b}
=[R2 — (hy— dy)?] — (RE—d2) -} h3 = 2h;d;.
Thus, we get the following radicand:

di
z h; 1
(se¢ Problem 182), which was required to be proved.

(We assumed that the centre of the circumscribed ball
lies inside the tetrahedron. If the centre is found out-
side it, proceed in the same way regarding one of the
quantities d; as being negative.)

302. Denote the lengths of the edges of the tetrahed-
ron ABCD asis shown in Fig. 58, a. Through the vertex A
pass a glane tangent to the ball circumscribed about the
tetrahedron ABCD. The tetrahedron ABC,D, in this
figure is formed by this tangent plane, the planes ABC,
ABD, and also by the plane passing through B parallel
to the face ADC. Analogously, the tetrahedron AB,C,D
is formed by the same tangent plane, the ¥lanes ABD,
ADC, and the plane passing through D parallel to ABC.

From the similarity of the triangles ABC and ABC,
(Fig. 58, b, AC, is a tangent line to the circle circum-

Z\
scribed about the triangle ABC, consequently, BAC,=

N\ _ VPN
BCA, besides, BC,|| AC, hence, C,BA= BAC) find

| AC, | =~‘;)i, Analogously, find | AD,] ::—5 , 1AC, | =
mp |AB, | -:-_n—%'—l, But the triangles AC,D, and AB,C,

5

are similar, hence

| €10,y 1 AD, | __ pc?

| AC, |~ | AB, |’ Dy | =

Note that if the lengths of the sides of the triangle
are multiplied by 3’;— , then these lengths will turn out
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to be numerically equal to the quantities am, bn, and
¢p, thus

¢
SAD;C1= b2m? S.

Let, further, AM denote the diameter of the
circumscribed ball and BK the altitude of the pyramid

9 Cy

(4) (c)
Fig. 58

ABC\D, dropped from B on AC,D, (Fig. 58, ¢). From
the similarity of the triangles ABK and 02LA (OL is
perpendicular to AB) we find iBKf::—g-ﬁ, Hence,
1 ct
ADCiB™ "3 JRbEm?

|4 S.
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And, finally,

Vapicis S aBcSaBp, ¢ 2 v __¢ 1%
V. SapcSapp b2 m? ' CADIGiBT pmd TC

Comparing two expressions for V,p, ¢, g, We get the truth
of the statement in question.

Remark. It follows from our reasoning that the angles
of the triangle the lengthsof the sides of which are numer-
ically equal to the products of the lengths of the oppo-
site ed%fs of the tetrahedron are equal to the angles ge—
tween the tangents to the circles circumscribed about three
faces of the tetrahedron. The tangents are drawn through
the vertex common for these faces and are situated in the
plane of the appropriate face. It is readily seen, that the
same will also be true for a degenerate tetrahedron, that
is, for a plane quadrilateral. Hence, in particular, it is
possible to obtain the theorem of cosines (Bretschneider’s
theorem, see p. 171) for a plane quadrilateral.

303. Let S, and S, denote the areas of the faces having
a common edge a, S5, and S, the areas of the two remaining
faces. Let, further, a, m, and n denote the lengths of the
edges forming the face S,, and a, y, and § the dihedral
angles adjacent to them, V the volume of the tetrahedron.
Then it is readily verified that the following equality
is true:

a %V—cotoz-{—micot v+n ﬂ/—coi; 6=28,,
1

Sy S,
or
252
acot o.-{-mcot -} n cot § =37 -

Writing such equalities for all the faces-of the tetra-
hedron, adding together the equalities corresponding to
the faces S; and S,, and subtracting the two others, we
get

acot @ — b cot = 3—%,- (S24-S3— S3—S3).

Squaring this equality, replacing cot? o and cot?f by
1 and

St m-—i, and taking advantage of the
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following equalities:

a2 45383  b® 45383
sinfo — 9V2 ’ sin2f - 9V?2
(see Problem 11), we finally get

a?-}-b2-4-2ab cot o cot I3=—9%ﬁ- (20—T1),

with Q the sum of the squares of the pairwise products of
the areas of the faces, and 7 the sum of the fourth powers
of the areas of the faces.

304. The necessity of all conditions is obvious. We
are goin%lto prove their sufficiency.

(a) The statement of the problem is readily proved by
making the development of the tetrahedron (to this end,
the surface of the tetrahedron should be cut along three
edges emanating from one vertex).

(b) Make the development of the tetrahedron ABCD
following Fig. 59, a in the supposition that the sums of

Dy, Cy

A, By

5;52 ﬂf: A] B-Ah gz-”&’

Fig. 59

the plane angles at the vertices B and C are equal to 180°,
The points D,, D,, and Dg correspond to the vertex D.
Two cases are possible:

(1) | AD | = | BC |.Inthiscase | DgA | 4 | D,A | =
2|BC| = |DsD,|, that is, the trian%{e D,ADy
degenerates, the point A must coincide with the point X
which is the midpoint of D,D,.

173 15—0449
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(2) |AB| =|CD| (or | AC|=|BD]). In this
case | KB | = | AB |, the point A being found on the
middle perpendicular to the side D,D,. If D\D,D, is
an acute-angled triangle, then | AB | << | KB | for points
A situated inside the triangle KBC, and | AB | > | KB |
for the points situated outside the triangle KBC.

And if the triangle D,D4D, is obtuse-angled (an obtuse
angle being either at the vertex D, or at the vertex D,),
then at one of the two vertices of the tetrahedron (either
B or C) one plane angle will be greater than the sum of
two other angles.

(c) Let |AB| = |CD|, |AC| = |DB|, and the
sum of the angles at the vertex D is erflual to 180°. We
have: the triangle ACD is congruent to the triangle ABD,

PN N
consequently, ADB = DAC.
PN N N N N
Thus ADB 4+ ADC + CDB = DAC 4 ADC +
N AN N
CDB = 180°. Hence, it follows that CDB = ACD
and AACD =ACDB, | AD| = | CB|.

(d) Cut the tetrahedron along the edges, and super-
impose the four triangles thus obtained one over another
so as to bring to coincidence their equal angles. In
Fig. 59, b, identical letters correspond to one and the
same vertex of the tetrahedron, and identical subscripts
to one and the same face. Identical letters corresponding
to one point show that at this point the corresponding
vertices of the appropriate triangles coincide. Conse-
quently,

| CsA3| = | CA |, | ByDy| =|B,D,|
and this means that ACj is parallel to B,D, which is
impossible.

(e) Project the tetrahedron ABCD on the plane par-
alle] to the edges AB and CD. Then it is possible to
prove that the projections of the triangles ABC and ABD
will be equivalent. Exactly in the same manner, the
projections of the triangles ACD and BCD will also be
equivalent. And this means that the parallelogram with
diagonals AB and CD will be the projection of ABCD.
Hence follow the equalities | AC| = |BD |, | AD | =
| BC|. The equality | AB| = | CD | isproved exactly
in the same way.
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(f) Let O, denote the point of tangency of the inscribed
sphere with the face ABC, and O, with the face BCD.
T];Je hypothesis implies that O, and O, are the centres
of the circles circumscribed about ABC and BCD. Be-
sides, the triangle BCO, is congruent to the triangle BCO,
This implies that

AN 4 AN L AN AN
BAC=:—- BO,0 = BO,C=BDC.

Reasoning in the same way, we shall obtain that all
the plane angles adjacent to the vertex D are equal to
the corresponding angles of the triangle ABC, that is,
their sum is equal to 180°. The same may be asserted
about the remaining vertices of the tetrahedron ABCD.
Further, take advantage of Item (a).

(%l) Complete the given tetrahedron to get a parallele-
piped in a usual way, that is, by passing through each
edge of the tetrahedron a plane parallel to the opposite
edge. Then the necessary and suFﬁcient condition of the
equality of the faces of the tetrahedron will be expressed
by the condition that the obtained parallelepiped be
rectangular. And from the fact that the edges of this
farallelepiped are equal and parallel to the corresponding
ine segments joining the midpoints of opposite edges
of the tetrahedron will follow our statement.

(h) If O is the centre of the sphere circumscribed about
the tetrahedron ABCD, then the hypothesis will imply
that the triangle AOB is congruent to the triangle COD,
since both triangles are isosceles with equal lateral sides,
equal medians emanating from the vertex O (O coincides
with the midpoint of the line segment joining the mid-
points of AB and CD). Consequently, | AB| = | CD |.
The equality of other pairs of opposite edges is proved
exactly in the same manner.

(i) From the fact that the distances from the centres
of gravity to all the faces are equal follows the equality
of the altitudes of the tetrahedron and then also the
equality of its faces (see Item (e)).

305. Let a, b, ¢, and d denote vectors perpendicular
to the faces of the tetrahedron, directed outside and having
the length numerically equal to the area of the corre-
sponding face, and let e, €;, €., and e; denote the unit

15»
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vectors having the same directions as a, b, ¢, and d.
Let, further, s denote the sum of the cosines of the dihedral
angles, and k = e, 4 e, 4 ¢, 1 e4.

It is obvious that k2 = 4 — 2s. Thus, indeed, s << 2
and s = 2 if and only if k =e, | e, -6, - 64 = 0.
But since a 4+ b+ ¢+ d = 0 (see Problem 214), we
obtain that for s = 2 the lengths of the vectors a, b, e,
and d are equal toone another, i.e. all the faces are equiv-
alent, and from the equivalency of the faces there follows
their congruence (see Problem 304 (g)). To complete the
proof, it remains to show that s > 0 or that | k| < 2.

For conveniency, we shall regard that |a | = 1,
IbI<<1, |e|l<1, |[d|<1. Then e, =a, |k
la+btec+d+ (e —b) + e —¢+f (@ — d
i —bl4le,—el+ log —d| = 3 —
lel+-1d) < 3 —Ib+e+d|=3— | =
Equality may be the case only if all the vectors a, b,
and d are collinear; since it isnot so, |k | << 2, s > 0.

306. Consider the tetrahedron all faces of which are
congruent triangles whose angles are respectively equal
to the plane angles of our trihedral angle. (Prove that
such tetrahedron exists.) All the trihedral angles of this
tetrahedron are equal to the given trihedral angle. The
sum of the cosines of the dihedral angles of such tetra-
hedron is equal to 2 (see Problem 304). Consequently,
the sum of the cosines of the dihedral angles of the given
trihedral angle is equal to 1.

307. Constructing a parallelepiped from the given
tetrahedron, and passing through each edge a plane par-
allel to the opposite edge, we shall get for the equifaced
tetrahedron, as is known, a rectanfular parallelepiped.

The centre of the inscribed ball coincides with the
centre of the parallelepiped, and the centres of the exter-
nally inscribed balls are found at the vertices of the
Earallelepiped different from the vertices of the tetra-

edron. This implies both statements of the problem.

308. Let ABCD be the given tetrahedron, DH its
altitude, DA,, DB,, and DC, the altitudes of the faces
dropped from the vertex D on the sides BC, CA, and AB.
Cut the surface of the tetrahedron along the edges DA,
DB, and DC and make the development (Fig. 60). It is
obvious that # is the point of intersection of the altitudes
of the triangle D,D,D,. Let F denote the point of inter-
section of the altitudes of the triangle ABC, AK the

|=
| <
| +
2.
C

Y
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altitude of this triangle, | AF | = hy, | FK | = h,. Then
ID]_HI :Zhl, ID]_A]_.I =h1‘l".h2, IHA]_I =|h1"'
he |. Hence, since h is the altitude of our tetrahedron,
h2=|DH|>=| DA, |>— | HA, |

= (b + hg)®> — (by — hy)? = 4hyh,.
Now, let M denote the centre of gravity of the triangle

ABC (it also serves as the centre of gravity of the tri-
angle D,D,D;), O the centre of the circle circumscribed

Fig. 60

about this triangle. It is known that F, M, and O lie
on one and the same straight line (Euler’s line), M lying
between F and O, | FM| = 2| MO |.

On the other hand, the triangle D,D,D, is homothetic
to the triangle A BC with centre at M and ratio of simil-
itude equal to (—2), hence, | MN | = 2| FM |. Hence
it follows that | OH | = | FO ).

309. When solvinﬁ the preceding problem, we proved
that the centre of the sphere circumscribed about the
tetrahedron is projected on each edge into the midpoint
of the line segment whose end points are the foot of the
altitude dropped on this face and the point of intersection
of the altitudes of this face. And since the distance from
the centre of the sphere circumscribed about the tetra-

hedron to the face is equal to _}h, where £ is the altitude

of the tetrahedron, the centre of the circumscribed sphere
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is found at a distance of Viiﬁ' h? 4 a? from the given

points, where q is the distance between the point of inter-
section of the altitudes and the centre of the circle cir-
cumscribed about the face.

310. First of all, let us note that all the triangles ABC
are acute, Indeed, if # is the point of intersection of the
altitudes of the triangle ABC, O the centre of the given
circle, then |OH | =3|0M |, M lying between O

Dy

Fig. 61

and H, that is, # isfound inside the circle circumscribed
about the triangle ABC, and this means that the triangle
ABC is acute, consequently, there is a point D such that
ABCD is an equifaced tetrahedron. Let us develop this
tetrahedron (Fig. 61). Obviously, &y, which is the point
of intersection of the altitudes of the triangle D,D,D,,
is the foot of the altitude dropped from D on ABC. But
the triangles ABC and D,D,D4 have a common centre of
gravity M with respect to which theg are homothetic
with the ratio of similitude (—2), hence | H,M | =
2| MH|, M lying between H, and H, H, is a fixed
goint. It remains to prove that the altitude of the tetra-

edron ABCD is also constant. In the triangle ABC
draw the altitude AK and extend it to intersect the cir-
cumscribed circle at point L. It is known (and is readily
proved) that |LK| = | KH|. Let | AH | = h,,
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{ HK | = h,, the altitude of the tetrahedron is k. We
know (see Problem 307) that h2 = 4hhy = 2 | AH | X
| HL | = 2 (R? — Qa?, where a = | OM |, which was
required to be proved.

311. Consider the cube AEFGA,E,F,G, with edge equal
to the side of the square ABCD. On the edges A,E, and
A,G, take the points P and Q suchthat | 4,P | = | BP | =
|1 CQ 1, 14,01 =1QD|=|PC| (Fig. 62,qa). Con-

6y

sider the rectangle A,PM,Q. In view of the condition
| A,P |+ | A,Q| = | A,E, |, the point M, lies on the
diagonal E,G,. Consequently, if M is the projection of M,
on EG, then the tetrahedron APQM has all the faces
equal to the triangle APQ. The square ABCD whose
plane contains the triangle APQ is obtained from the
square AEE,A, by rotating about the diagonal AF,
through some angle a (Fig. 62, b). Since the plane EGA,
is perpendicular to the diagonal AF,, BD belongs to
this plane. But the planes AEE,A4,, ABCD, as well as the
straight lines EG, EA,, A,G, and BD are tangent to the
ball inscribed in the cube. Hence it follows that the
angle between the planes ABCD and A,EG has a constant
size, it is equal to the angle ¢ between the planes AEE A,
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and A,EG for which cos ¢ = —1-5 But the planes 4,EG

and ABCD intersect along the diagonal BD. Hence, the
point M lies in the plane passing through BD and making
an angle ;p with the plane ABCD, and the locus of pro-
jections of points M will be represented by two line seg-
ments emanating from the midpoint of AC at an angle ¢

to AC so thatcos¢ = -]}-?, and having the length a .]-/23

(Fig. 62, c).

312. (a) Let ABCD denote the given tetrahedron. If its
altitudes intersect at the point #, then DH is perpen-
dicular to the plane ABC and, hence, DH isperpendic-
ular to BC. Exactly in the same way, AH is perpendic-
ular to BC. Consequently, the plane DAH is perpen-
dicular to BC, that is, the edges DA and BC are mutually
perpendicular.

Conversely, let the opposite edges of the tetrahedron
ABCD be pairwise perpendicular. Through DA pass
a plane perpendicular to BC. Let us show that the alti-
tuges of the tetrahedron drawn from the vertices A and D
lie in this plane.

Denote by K the point of intersection of the passed
plane and the edge BC. The altitude DD, of the triangle
ADK will be perpendicular to the lines AX and BC,
hence, it is an altitude of the tetrahedron. Thus, any two
altitudes of the tetrahedron intersect, hence, all the four
intersect at one point.

(b) It is easy to prove that if one altitude of the tetra-
hedron passes through the Foint of intersection of the
altitudes of the appropriate face, then the (:lpposite edges
of the tetrahedron are pairwise perpendicular. Tﬁs
follows from the theorem on three perpendiculars. Hence,
Items (a) and Sb) are equivalent.

(c) The equality of the sums of the squares of opposite
edges of the tetrahedron is equivalent to the condition
of the perpendicularity of opposite edges (see Item (a)).

(d) Complete the tetrahedron to a parallelepiped, as
usual, by passing through each of its edges a plane parallel
to the opposite edge. The edges of the obtained parallele-
piped are equal to the distance between the midpoints
of the skew edges of the tetrahedron. On the other hand,
the condition of perpendicularity of opposite edges of
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the tetrahedron which is, according to Item (a), equiva-
lent to the condition of the orthocentricity of the given
tetrahedron, is, in turn, equivalent to the condition
of the equality of the edges of the obtained parallelepiped
(the diagonals of each face are equal and parallel to two
opposite edges of the tetrahedron, that is, each face
must be a rhombus).

ga) From Problems 300 and 303 it follows that this
condition is equivalent to the condition of Item (c).

(f) Let ¢ and a,, b and b, ¢ and ¢, be the lengths of
three pairs of oEposite edges of the tetrahedron, o the
angle between them. From Problem 185 it follows that
of the three numbers aa, cos o, bb, cos o, and cc, cos a
one is equal to the sum of two others. If cos o == 0, then
of the three numbers aa,, bb,, and cc, one number is
equal to the sum of two others. But this is impossible,
since there is a triangle the lengths of the sides of which
are numerically equal to the quantities aa,, bb;, and cc,
(see Problem 302).

313. Let ABCD denote the given tetrahedron. Com-
plete it to get a parallelepipedg in a usual way. Since

ABCD is an orthocentric tetrahedron, all the edges of the
ga_arallelepi?ed will be equal in length. Let A,B, be the

iagonal of a face of the parallelepiped parallel to AB, O
the centre of the,ball, circumscribed about ABCD, H
the point of intersection of the altitudes, M the centre
of gravity (Fig. 63). Then the triangles ABH and A,B,0
are symmetric with respect to the point M. This follows
from the fact that ABB,A, is a parallelogram and, be-

16-0449
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sides, 4,0 is perpendicular to the plane ACD (the points
O and A; are equidistant from the points A, C, and D),
and, hence, parallel to BH. Exactly in the same manner,
OB, is parallel to AH.

314. Let us introduce the notation used in the pre-
ceding problem. Let K and L be the midpoints of AB
and A,B;. Then KOLH is a parallelogram. Consequently,

| OH |2=2| OK |24-2| OL |2— | KL |2

_1A4B .L.Qﬂi)_
3

=2 (R —15 )+2 (R — 2

= 4RY— (| AB |*+| CD %) — B=4R? — 312

315. If ABCD is an orthocentric tetrahedron, then
(see Problem 312 (d))

|AB|2+4 | CD |12=| AD |2+ | BC |},

whence

| AB |2+ |ACI2P— | BC|2=|AD |2+ | AC |?
—-lCDlz,

N\ N
that is, the angles BAC and DAC are both acute or ob-
tuse.

316. The section of an orthocentric tetrahedron by
any plane parallel to opposite edges and passing atan
equal distance from these edges is a rectangle whose
diagonals are equal to the distance between the midpoints
of opposite edges of the tetrahedron (all these distances
are equal in length, see Problem 312 (d)).

Hence it follows that the midpoints of all the edgﬁs
of an orthocentric tetrahedron lie on the surface of the
sghere whose centre coincides with the centre of gravity
of the given tetrahedron and the diameter is equal to
the distance between the opposite edges of the tetrahed-
ron. Hence, all the four 9-point circles lie on the surface
of this sphere.

317. Let O, M, and H respectively denote the centre
of the circumscribed ball, centre of gravity and ortho-
centre (the point of intersection of altitudes) of the ortho-
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centric tetrahedron, M the midpoint of the line segment
OH (see Problem 313). The centres of gravity of the faces
of the tetrahedron serve as the vertices of the tetrahedron,
homothetic to the given one, with the centre of similitude
at the point M and the ratio of similitude equal to —(1/3).
In this homothetic transformation the point 0 will move
into the point O, situated on the line segment MH so
that | MO, | = 1/3| OM |, O, will be the centre of the
sphere passing through the centres of gravity of the faces.

On the other hand, the points dividing the line seg-
ments of the altitudes of the tetrahedron from the vertices
to the orthocentre in the ratio 2 : 1 serve as the vertices

Fig. 64

of the tetrahedron homothetic to the given with the
centre of similitude at A and the ratio of similitude
equal to 1/3. In this homothetic transformation the point
0, as is readily seen, will go to the same point O,. Thus,
eight of twelve points lie on the surface of the sphere
with centre at O, and radius equal to one-third the radius
of the sphere circumscribed about the tetrahedron.

Prove that the points of intersection of altitudes of
each face lie on the surface of the same sphere. Let O,
H’', and M’ denote, respectively, the centre of the cir-
cumscribed circle, the point of intersection of altitudes,
and the centre of gravity of some face. O’ and H’ are the
respective Erojections of O and H on the plane of this
face, and the point M’ divides the line segment O’H’
in the ratio 1 : 2 as measured from the point 0’ (a well-
known fact from plane geometry). Now, we easily make
sure gsee Fig. 64) that the projection of O, on the plane of
this face (point Of) coincides with the midpoint of the
line segment M'H’, that is, O, is equidistant from M’
and A’ which was required to be proved.

16*
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318. The centres of gravity of the faces of the ortho-
centric tetrahedron lie on the surface of the sphere homo-
thetic to the sphere circumscribed about the tetrahedron
with the centre of similitude at the point M and the ratio
of similitude equal to 1/3 (see the solution of Problem
317). Hence follows the statement of the problem.

319. The feet of the altitudes of the orthocentric
tetrahedron lie on the surface of the sphere homothetic
to the sphere circumscribed about the tetrahedron with
the centre of similitude at the point G and ratio of simil-
itude equal to —(1/3) (see the solution of Problem 317).
Hence follows the statement of the problem.

320. Suppose the contrary. Let the planes containing
the arcs intersect pairwise on the surface of the ball at
points A and 4,, B and B,, C and C, (Fig. 65). Since each

Fig. 65

arc measures more than 180°, it must contain at least
one of any two opposite points of the circle on which
it is situated. Let us enumerate these arcs and, respec-
tively, the planesthey lie in: I, II, I1I. A and A, are the
points of intersection of planes I and II, B and B, the
points of intersection of planes II and III, C and C
the points of intersection of planes III and I. Each oi
the points 4, 4,, B, B, C, C, must belong to one arc.
Let A, and C, belong to arc I, B; to arc 1. Then B and C
must ]belong to arc III, A to arc II. Denote by a, B, v
the plane angles of the trihedral angles, as is shown in
the figure, O the centre of the sphere. Since arc I does not
contain the points A and C, the inequality 360° — f§ >
300° must be fulfilled.

Similarly, since arc II does not contain the points B
and A,, it must be 180° 4+ a > 300° and, finally, for
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arc III we will have 360° — y > 300°. Thus, B < 60°,
o b? 120°, y < 60°, hence, o > P -+ y, which is impos-
sible.

321. Let A and B denote two points on the surface of
the sphere, C a point on the smaller arc of the great circle
passing through A and B.

Prove that the shortest path from A to B must pass
through C. Consider two circles & and B on the surface
of the sphere passing through C with centres on the radii
OA and OB (O the centre of the sphere). Let the line join-
ing A to B does not pass through € and intersect the circle
o at point M and the circle § at N.

Rotating the circle a together with the part of the
line enclosed inside it so that M coincides with € and the
circle p so as to bring N in coincidence with C, we get
a line joining A and B whose length, obviously, is less
than the length of the line under consideration.

322. The circumscribed sphere may not exist. It
can be exemplified by the polyhedron constructed in the
following way. Take a cube and on its faces as on bases
construct outwards regular quadrangular pyramids with
dihedral angles at the base equal to 45°. As a result, we
get a dodecahedron (the edges of the cube do not serve as
the edges of this polyhedron), having fourteen vertices,
eight of which are the vertices of the cube, and six are
the vertices of the constructed pyramids not coinciding
with the vertices of the cube.

It is easy to see that all the edges of this polyhedron
are equal in length and equidistant from the centre of
the cube, while the vertices cannot belong to one sphere.

323. Let us note, first of all, that the area of the spher-
ical lune formed by the intersection of the surface of the
sphere with the faces of the dihedral angle of size &, whose
edge passes through the centre of the sphere, is equal
to 2aR2. This fol%ows from the fact that this area is
proportional to the magnitude of &, and for @ = n it is
equal to 2nR2

To each pair of planes forming the two faces of the
given trihedral there correspond two lunes on the surface
of the sphere. Adding their areas, we get the surface
of the sphere enlarged by 4SA, where Sao is the area
of the desired triangle. Thus,

Sy =Rt (@+B+7v—m.
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The quantity a4 B 4 y — n is called the spheric excess
of the spheric triangle.

324, Consider the sphere with centre inside the poly-
hedron and project the edges of the polyhedron from the
centre of the sphere on its sphere.

The surface of the sphere will be broken into poly-
gons. If n, is the number of sides of the kth polygon,
Ay the sum of its angles, S, the area, then

Sy = R*[A4, — n (np, — 2)).

Adding together these equalities for all X, we get
4nR? = R? 2nN — 2nk + 2nM).

Hence,

N—K+M=2,

325. Let o denote the central angle corresponding to
the spheric radius of the circle ﬂ;he angle between the
radii of the sphere drawn from the centre of the sphere
to the centre of the circle and a f.boint on the circle).

Consider the spheric triangle corres ondin%1 to the
trihedral angle with vertex at the centre of the sphere one
edge of which (OL) passes through the centre of the circle,
another (OA), through the point on the circle, and a third
(OB) is arranged so that the plane OAB touches the circle,
the dihedral angle at the edge OL being equal to ¢,

N\
LOA = «a. :

Applying the second theorem of cosines (see Prob-
lem 166), find the dihedral angle at the edge OB, it is
equal to arccos (cos a sin ¢). Any circumscribed polygon
(our polygon can be re%arded as circumscribed, since
otherwise its area could be reduced) can be divided into
triangles of the described type. Adding their areas, we
shall see that the area of the polygon reaches the smallest
value together with the sum arccos (cos @ sin ¢,) 4
arccos (cos o sin @,) +- ... - arccos (cos o sin @y).
where ¢,, . . ., ¢y are the corresponding dihedral angles,
¢+ e ... i ¢y = 2n. Then we can take advan-
tage of the fact that the function arccos (k sin @) is a
concave (or convex downward) function for 0 << k << 1.
Hence it follows that the minimum of our sum is reached

for ¢, =@s= ... = @yu.
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326. Denote, as in Problem 324, by N the number of
faces, by K the number of edges, and by M the number
of vertices of our polyhedron,

N—K+M=2. )

Since from each vertex there emanate at least three edges

and each edge is counted twice, M < %K . Substituting

e
M into (1), we get

N_%m>a

2K

whence 2K <C 6NV —12, A << 6. The latter means that

there is a face having less than 6 sides. Indeed, let us
numher the faces and denote by n,, ns, ..., ny the
number of sides in each face. Then

nit+not...4+ny 2K
N =N

327. 1f each face has more than three sides and from
each vertex there emanate more than three edges, then
(the same notation as in Problem 324)

K>2M, K >2N

and N — K 4+ M < 0, which is impossible.

328. If all the faces are triangles, then the number
of edges is multiple of 3. If there is at least one face
with the number of sides exceeding three, then the num-
ber of edges is not less than eight. An n-gon pyramid has
2n edges (n > 3); (2n -+ 3) edges (n = 3) will be found
in the polyhedron which will be obtained if an n-gon
pyramid is cut by a triangular plane passing sufficiently
close to one of the vertices of the base.

329. If the given polyhedron has n faces, then each
face can have from three to (n — 1) sides. Hence it follows
that there are two faces with the same number of sides.

330. Consider the so-called d-neighbourhood of our
polyhedron, that is, the set of points each of which is
found at a distance not greater than 4 from at least one
point of the polyhedron. The surface of the obtained solid

< 6.
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consists of plane parts equal to the corresponding faces
of the polyhedron, cylindrical parts corresponding to the
edges of the polyhedron (here, if I; is the length of some
edge and o; is the dihedral angle at this edge, then the
surface area of the part of the corresponding cylinder is
equal to (m — ;) l;d), and spherical parts correspondin
to the vertices o tﬂe polyhedron the total area of whic
is equal to the surface area of the sphere of radius d.
On the other hand, the surface area of the d-neighbourhood
of the polyhedron is less than the surface area of the sphere
of radius d - 1, that is,

S+d D) (n—a;) I+ 4nd? < 4n (d4-1)%
And since «; s-zgi, we get

M 1< 24,

which was required to be proved.

331. In Fig. 66, O denotes the centre of the sphere,
A and B are the points of intersection of the edge of the

Fig. 66

dihedral angle with the surface of the sphere, D and C

are the midpoints of the arcs ADB and ACB, respectively,
the plane ADB passes through O, and E is the vertex
of the spherical segment cut off by the plane ACB. The
area of the curvilinear triangle ADC amounts to half the

desired area. On the other hand ( assuming o Q%’),

Sapc = Sagc — Sagp- (1)
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Find Ssgpc. 1f ¢ is the angle between the planes AEO

and OEC, | EK | =h, then obviously, SAEC=%2uRh=

QR~E; h and ¢ are readily found:
h=|EK|=R— | OK|=R—asina,

: N AL V RE—a?
smcp:smAKL—l_____ VR —atsnia
arcsin VRz_az
Pl 1 .
\ V RZ=¢%sin?a

Thus,
V=&

R?2—q?g8in? o

(2)

Sarc= R (R—asin a) arcsin v

Now find S4pxp. As is known (See Problem 323),
Sapgp =R (@+ ¢+ v — ),

where @, P, and y are the dihedral angles of the trihedral
angle with vertex at O and edges OE OA, and OD. The
angle ¢ is already found.

To determine the angle ¥ (the angle at the edge OA),
take advantage of the first theorem of eosines (Problem
1?16) happhed to the trihedral angle with vertex A4 for
whic

/ N\ /N /N
KAL — ;‘ — @, sin KAO__“S;I;“, sin A0 — 2. &

Consequently,
V R2 g2 . l/i_azsmzal/i
cos § = V R2—a?sin®a
asin & _(l—
R 'R
3__ 43
VR—a sin c.

- YV R®*—a?sin? o
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It is obvious that y = m/2. Consequently,
V RP—a

V R2—a®sin?

V R2—a®sina = ]

V RZ—a®sin2a 2 J°

Substituting (2) and (3) into (1) and simplifying, we get
the answer.
A nswer:

SAED = R? I:arcsin

4 arccos

3

Rcosa

2R? arccos —————-—
V R*—a?sin®a

acosa
V RZ=a%sin’a

332, Consider the regular octahedron with edge 2R.
The ball touching all of its edges has the radius R. The
surface of the ball is separated by the surface of the octa-

hedron into eight spherical segments and six curvilinear
quadrilaterals equal to the smaller of the two desired.

Answer: Znst (4 ]/%—-3) ,

o (81 F-1).

2 (o 1/%
333. Twelve lunes with total area na? (2 A 1/3) and

—2Ra sin o arccos

six curvilinear quadrilalerals whose total area is

na2 (Y 3—1)
5 .

334. Suppose that a ball can be inscribed in the given
polyhedron. Join the point of tangency of the ball with
some face to all the vertices of this face. Each face will
be separated into triangles. Triangles situated in neigh-
bouring faces and having a common odge are congruent.
Consequently, to each “black” triangle there corresponds
a congruent “white” triangle. The sum of the angles of the
triangle at each point of tangency is equal to 2n. The
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sum of these angles over all faces is equal to 2nn, where

n is the number of faces. Of this sum more than half
is the share of “black” triangles (by the hypothesis),

and the sum of the corresponding angles for “white”

firiangles, as it was proved, is not less. There is a contra-
iction.

335. Prove that there can be not more than six balls.
Suppose that there are seven balls. Join the centres of
all the seven balls to the centre of the given ball and
denote by 0,, O0,, ..., 0, the points of intersection of
these line segments with the surface of the given ball.
For each point O; consider on the sphere the set of points
for which the distance (over the surface of the sphere) to
the point O; is not greater than the distance to any other
point Oy, k % i. The sphere will be separated into seven
slf)herical polygons. Each polygon is the intersection
of six hemispheres containing the point O; whose bounda
is the great circle along which the plane passing throug
the midpoint 0;0;, and per}l)endicular to it cuts the sphere.

Each of the formed polygons contains a circle whose
spherical radius is seen from the centre of the original
sphere at an angle «, sin & = 0.7.

Denote by K and N, respectively, the number of sides
and vertices of the separation thus obtained. (Each side
is a common side of two adjacent polygons and is counted
only once. The same is valid for the vertices.) It is easily
seen that for such separation Euler’s formula holds true
(see Problem 324). In our case this will yield X = N 4 5.

On the other hand, K > %N, since from each vertex

there emanate at least three sides, and each side is
counted twice.

Now, it is easy to obtain that X << 15, N < 10. In
Problem 325, we have proved that among all spherical
n-gons containing the given circle a regular n-gon has
the smallest area. Besides, it is possible to show that
the sum of areas of regular n- and (n 4 2)-gons is greater
than the doubled area of a regular n-gon. (The polygons
circumscribed about one circle are considered.) It is also
obvious that the area of a regular circumscribed n-gon
is decreased with an increase in n. Hence it follows that
the sum of areas of the seven obtained polygons cannot
be less than the sum of areas of five regular quadrilaterals
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and two regular pentagons circumscribed about the circle
with the spherical radius to which there corresponds the
central angle a=arcsin 0.7. The area of the correspond-
ing regular pentagon will be

5
the area of the regular quadrilateral

s5=9 [10arccos (cos o sin 1)—3:;] ,

2

We can readily prove that 2s,-}- 5s, > 36n. Thus, seven
balls with radius 7 cannot sim&ltaneously touch the
ball with radius 3 without intersecting one another.
At the same time we can easily show that it is possible
in the case of six balls.

336. Consider the cube ABCDA,B,C;D,. On the edges
A.B and A,D take points K and L SUCL fhat | 4;K | =
|CM |, |A,L|=|CN|. Let P and Q@ denote the
points of intersection of the lines AKX and BA,, AL and
DA,, respectively.

As is easily seen, the sides of the triangle A,PQ are
equal to the corresponding line segments of the diagonal
BD. And since the triangle BA,D is regular, our statement
has been proved.

337. 1f the point P did not lie in the plane of the
triangle ABC, the statement of the problem would be
obvious, since in that case the points P, 4,, B,, and C,
would belong to the section of the surface of the sphere
circumscribed about the tetrahedron ABCP by the plane
passing through P and !. The statement of our problem
(1:an now be o%tained with the aid of the passage to the
imit.

338. Let ABCDEF denote the plane hexagon circum-
scribed about the circle. Take an arbitrary space hexagon
A\B,C,D,E,F, (Fig. 67), different from ABCDEF, whose
projection on our plane is the hexagon ABCDEF and
whose corresponding sides pass through the points of
contact of the hexagon ABCDEF and the circle. To prove
the existence of such hexagon A,B,C,D,E,F,, it suffices
to take one vertex, say 4,, arbitrarily on the perpendic-
ular to the plane erected at the point A, then the remain-

2
§;=9 [8 arccos (l/— cos o )— Zn] .
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ing vertices will be determined identically. Indeed, let
a, b, ¢, d, e, and f be the lengths of the tangents to the
circle drawn through the respective points 4, B, C, D,
E, F, and h the distance from A to the plane. Then B,
lies on the other side of the plane as compared with A4

Fig. 67

at a distance of @, C, on the same side as A, at a distance
a

of h_b-% = 2¢ from the plane, and so on. Finally, we
a

a
find that F, lies on the other side of the plane as compared

with 4, at a distance of hi and, hence, A, and F, lie on

a
the straight line passing through the point of tangency
of AF with the circle.

Any two opposite sides of the hexagon 4,B,C,D,E,F,
lie in one and the same plane. This follows from the
fact that all the angles formed by the sides of the hexa-
gon with the given plane are congruent. Consequently,
any two diagonals connecting the opposite vertices of
the hexagon A4,B,C,D,E,F, intersect, and, hence, all
the three diagonals of this hexagon (they do not lie in
one plane) intersect at one Eoint. Since the hexagon
ABCDEF is the projection of the hexagon 4,B,C,D,E,F,,
the theorem has been proved.

339. The plane configuration indicated in the problem
can be regarded as three-dimensional projection: a tri-
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hedral angle cut by two planes, for which our statement
is obvious.

340. This problem represents one of the possible
three-dimensional analogues of Desargues' theorem (see
Problem 339). For its solution, it is convenient to go out
to a four-dimensional space.

Let us first consider some properties of this space.

The simplest figures of the four-dimensional space are:
a point, a straight line, a plane, and a three-dimensional
variety which will be called the hyperplane. The first
three figures are our old friends from the three-dimen-
sional space. Of course, some statements concerning
these figures must be refined. For instance, the following
axiom of the three-dimensional space: if two distinct
planes have a common point, then they intersect along
a straight line, must be replaced by the axiom: if two
distinct planes belonging to one hyperplane have a com-
mon point, then they intersect along a straight line. The
introduction of a new geometric image, a hyperplane,
prompts the necessity to introduce a group of relevant
axioms, just as the passage from plane geometry to solid
geometry requires a group of new axioms (refresh them,
please) expressing the basic pr?ferties of planes in space.
This group consists of the following three axioms:

1. Whatever a hyperplane is, there are points belong-
ing to it and points not belonging to it.

2. If two distinct hype lanes%lave a common point,
then they intersect over a plane, that is, there is a plane
belonging to each of the hyperplanes.

3. 1f a straight line not belonging to a plane has a
common point with this plane, then there is a unique
hyperplane containing this line and this plane.

From these axioms it follows directly that four points
not belonging to one plane determine a hyperplane; exact-
ly in the same way, three straight lines not belonging to
one plane, but having a common point, or two distinct
planes having a common straight line determine a hyper-
plane. We are not going to prove these statements, try
to do it independently.

For our further reasoning we need the following fact
existing in the four-dimensional space: three distinct
hyperﬂ anes having a common point also have a common
straight line. Indeed, by Axiom 2, any two of three hyper-
planes have a common plane. Let us take two planes
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over which one of the three hy%erplanes intersects with
two others. These two planes belonging to one hyper-
plane have a common point and, hence, intersect along
a straight line or coincide.

Let us now pass to the proof of our statement. If the
three planes under consideration were arranged in a four-
dimensional space, then the statement would be obvious.
Indeed, every trihedral angle determines a hyperplane.
Two hyperplanes intersect over a plane. This plane does
not belong to a third hyperplane (by the hypothesis,
these hyperplanes intersect one of the given planes along
three strai ﬁt lines not passing through one point) and,
consequently, intersects with them along a straight line.
Any three corresponding faces of trihedral angles lie
in one hyperplane determined by two planes on which
the corresponding edges lie, and therefore each triple
of the corresponding faces has a common point. These
three points belong to the three hyperplanes determined
by the trihedral angles, and, as it was proved, lie on one
straight line. Now, to complete the proof, it is sufficient
to “see” in the given hypothesis the projection of the cor-
responding four-dimensional configuration of planes and
trihedral angles.
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